Silica-based Photonic Crystal Fiber for Supercontinuum Generation in the Anomalous Dispersion Region: Measurement and Simulation

Bien Chu Van, Hieu Van Le, Chin Hoang Van, Thao Nguyen Thi, Van Thuy Hoang, Dinh Quang Ho, Van Cao Long
Author affiliations

Authors

  • Bien Chu Van Yersin Da Lat University, 27 Ton That Tung, Ward 8, Da Lat City, Vietnam
  • Hieu Van Le Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
  • Chin Hoang Van Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
  • Thao Nguyen Thi Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
  • Van Thuy Hoang Department of Physics, Vinh University, 182 Le Duan, Vinh City, Vietnam
  • Dinh Quang Ho School of Chemistry, Biology and Environment, Vinh University, 182 Le Duan Street, Vinh City, Vietnam
  • Van Cao Long Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland

DOI:

https://doi.org/10.15625/0868-3166/17121

Keywords:

nonlinear optics, Photonic crystal fiber, anomalous dispersion, supercontinuum generation

Abstract

We report on numerical simulation and experimental study of the supercontinuum (SC) generation in the anomalous dispersion region of photonic crystal fiber (PCF). The results show that a flat and stable spectrum with bandwidth of 130 nm around the central pump wavelength was achieved with an input power of 4.0 W. Although the measured spectrum is slightly different from the numerical ones, a good consistency can be recognized in the major sideband positions and spectral width. In addition, the chromatic dispersion of air silica PCF was measured at visible and near-infrared wavelengths using the Mach-Zehnder interferometer configuration and then verified by comparison with simulated results.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T. Stiehm, R. Schneider, J. Kern, I. Niehues, S. Michaelis de Vasconcellos and R. Bratschitsch, Supercontinuum second harmonic generation spectroscopy of atomically thin semiconductors, Rev. Sci. Instrum. 90 (2019) 083102. https://doi.org/10.1063/1.5100593 https://doi.org/10.1063/1.5100593">

H. Wang, C. P. Fleming and A. M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15 µm using photonic crystal fiber with no zero-dispersion wavelengths, Opt. Express. 15 (2007) 3085. https://doi.org/10.1364/OE.15.003085 https://doi.org/10.1364/OE.15.003085">

C. Poudel and C. F. Kaminski, Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications, J. Opt. Soc. Am. B. 36 (2019) A139. https://doi.org/10.1364/JOSAB.36.00A139 https://doi.org/10.1364/JOSAB.36.00A139">

J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes et al., Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity, Opt. Express. 17 (2009) 1447. https://doi.org/10.1364/OE.17.001447 https://doi.org/10.1364/OE.17.001447">

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer and H. Bartelt, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Opt. Express. 19(2011) 3775. https://doi.org/10.1364/OE.19.003775 https://doi.org/10.1364/OE.19.003775">

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth and J. C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion, Opt. Express. 19 (2011) 4902. https://doi.org/10.1364/OE.19.004902 https://doi.org/10.1364/OE.19.004902">

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki et al., Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber, Opt. Lett. 34 (2009) 2015. https://doi.org/10.1364/OL.34.002015 https://doi.org/10.1364/OL.34.002015">

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna and E. Alvarado-Mendez, Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs, Laser Phys. Lett. 10 (2013) 075101. https://doi.org/10.1088/1612-2011/10/7/075101 https://doi.org/10.1088/1612-2011/10/7/075101">

J. M. Dudley and S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers, Opt. Lett. 27 (2002) 1180. https://doi.org/10.1364/OL.27.001180 https://doi.org/10.1364/OL.27.001180">

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng et al., Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser, Appl. Phys. Lett. 110 (2017) 061102. https://doi.org/10.1063/1.4975678 https://doi.org/10.1063/1.4975678">

Y. Huang, H. Yang, S. Zhao, Y. Mao and S. Chen, Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions, Results in Phys. 23 (2021) 104033. https://doi.org/10.1016/j.rinp.2021.104033 https://doi.org/10.1016/j.rinp.2021.104033">

K. Park, J. Na, J. Kim and Y. Jeong, Numerical study on supercontinuum generation in an active highly nonlinear photonic crystal fiber with anomalous dispersion, IEEE J. Quantum Electron. 56 (2020) 6800109. https://doi.org/10.1109/JQE.2020.2974519 https://doi.org/10.1109/JQE.2020.2974519">

F. R. Arteaga-Sierra, A. Antikainen and G. P. Agrawal, Dynamics of soliton cascades in fiber amplifiers, Opt. Lett. 41 (2016) 5198. https://doi.org/10.1364/OL.41.005198 https://doi.org/10.1364/OL.41.005198">

C. Lei, A. Jin, R. Song, Z. Chen and J. Hou, Theoretical and experimental research of supercontinuum generation in an ytterbium-doped fiber amplifier, Opt. Express. 24 (2016) 9237. https://doi.org/10.1364/OE.24.009237 https://doi.org/10.1364/OE.24.009237">

T. Li, Optical Fiber Communications: Fiber Fabrication, Academic Press (San Diego), 1985.

V. C. Lanh, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long et al., Supercontinuum generation in photonic crystal fibres with core filled with toluene, J. Opt. 19 (2017) 125604. https://doi.org/10.1088/2040-8986/aa96bc https://doi.org/10.1088/2040-8986/aa96bc">

H. Saghaei, P. Elyasi and R. Karimzadeh, Design, fabrication, and characterization of Mach-Zehnder interferometers, Photonics Nanostructures - Fundam. Appl. 37 (2019) 100733. https://doi.org/10.1016/j.photonics.2019.100733 https://doi.org/10.1016/j.photonics.2019.100733">

H. L. Van, R. Buczynski, V. C. Long, M. Trippenbach, K. Borzycki, A. N. Manh et al., Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture, Opt. Commun. 407 (2018) 417. https://doi.org/10.1016/j.optcom.2017.09.059 https://doi.org/10.1016/j.optcom.2017.09.059">

Mode Solution, Lumerical Solutions, https://www.lumerical.com/tcad-products/mode/ https://www.lumerical.com/tcad-products/mode/">

G. P. Agrawal, Nonlinear Fiber Optics 5th edition, Academic Press (Oxford), 2013. https://doi.org/10.1016/B978-0-12-397023-7.00011-5 https://doi.org/10.1016/B978-0-12-397023-7.00011-5">

S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg et al., Anomalous dispersion in a solid, silica-based fiber, Opt. Lett. 31 (2006) 2532. https://doi.org/10.1364/OL.31.002532 https://doi.org/10.1364/OL.31.002532">

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise and W. G. Clark, Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser, Opt. Lett. 28 (2003) 0146. https://doi.org/10.1364/OL.28.001365 https://doi.org/10.1364/OL.28.001365">

Downloads

Published

25-07-2022

How to Cite

[1]
V. B. Chu, H. V. Le, V. C. Hoang, T. T. Nguyen, V. T. Hoang, D. Q. Ho and L. V. Cao, Silica-based Photonic Crystal Fiber for Supercontinuum Generation in the Anomalous Dispersion Region: Measurement and Simulation, Comm. Phys. 32 (2022) 369. DOI: https://doi.org/10.15625/0868-3166/17121.

Issue

Section

Papers
Received 13-05-2022
Accepted 15-07-2022
Published 25-07-2022

Most read articles by the same author(s)