Impact of Magnetic Field on Magnetic States in Kagome Magnets

Thanh Mai Tran, Minh Tien Tran
Author affiliations

Authors

  • Thanh Mai Tran Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Minh Tien Tran Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/16920

Keywords:

kagome lattice, spin-orbit coupling, topology, electron correlation

Abstract

Impact of magnetic field on the magnetic states in kagome magnets is studied. The magnetic field is patterned in such a way that it can generally maintain the most prominent magnetic states in kagome magnets, such as the out-of-plane ferromagnetism and the in-plane antiferromagnetism. The tight-binding model with the spin-orbit coupling and the magnetic field on the kagome lattice is exactly solved. In both the out-of-plane ferromagnetic and the in-plane antiferromagnetic states the magnetic field opens a gap at half filling.
In the out-of-plane ferromagnetic state both the half topological state, where only one spin component is topologically nontrivial, and the quantum spin anomalous Hall effect, where both spin components are topologically nontrivial, can be observed. The in-plane antiferromagnetic state may be insulating, but it is topologically trivial. The quantum anomalous Hall effect may also be observed in canted \(\sqrt{3} \times \sqrt{3}\) antiferromagnetic state.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J-X. Yin, S. Pan and M.Z. Hasan, Probing topological quantum matter with scanning tunnelling microscopy, Nat. Rev. Phys. 3 (2021) 249. DOI: https://doi.org/10.1038/s42254-021-00293-7

M. Z. Hasan, G. Chang, I. Belopolski, G. Bian, S.-Y. Xu and J.-X. Yin, Weyl, Dirac and high-fold chiral fermions in topological quantum matter, Nat. Rev. Mat. 6 (2021) 784. DOI: https://doi.org/10.1038/s41578-021-00301-3

Z. Guguchia, J. A. T. Verezhak, D. J. Gawryluk, S. S. Tsirkin, J.-X. Yin, I. Belopolski, H. Zhou, G. Simutis, S.-S. Zhang, T. A. Cochran, G. Chang, E. Pomjakushina, L. Keller, Z. Skrzeczkowska, Q. Wang, H. C. Lei, R. Khasanov, A. Amato, S. Jia, T. Neupert, H. Luetkens and M. Z. Hasan, Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet, Nat. Commun. 11 (2020) 559. DOI: https://doi.org/10.1038/s41467-020-14325-w

Z. Guguchia, H. Zhou, C. N. Wang, J. X. Yin, C. Mielke, S. S. Tsirkin, I. Belopolski, S. S. Zhang, T. A. Cochran, T. Neupert, R. Khasanov, A. Amato, S. Jia, M. Z. Hasan and H. Luetkens, Multiple quantum phase transitions of different nature in the topological kagome magnet Co3Sn2-xInxS2 , npj Quantum Materials 6 (2021) 50. DOI: https://doi.org/10.1038/s41535-021-00352-3

K. Ohgushi, S. Murakami and N. Nagaosa, Spin anisotropy and quantum Hall effect in the kagom´e lattice: Chiral spin state based on a ferromagnet, Phys. Rev. B 62 (2000) R6065. DOI: https://doi.org/10.1103/PhysRevB.62.R6065

E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. S¨uß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein and C. Felser, Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nat. Phys. 14 (2018) 1125. DOI: https://doi.org/10.1038/s41567-018-0234-5

Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magneticWeyl fermions Nat. Commun. 9 (2018) 3681. DOI: https://doi.org/10.1038/s41467-018-06088-2

Thanh-Mai Thi Tran, Duong-Bo Nguyen, Hong-Son Nguyen and Minh-Tien Tran, Magnetic competition in topological kagome magnets, Mater. Res. Express 8 (2021) 126101. DOI: https://doi.org/10.1088/2053-1591/ac433c

C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95 (2005) 226801. DOI: https://doi.org/10.1103/PhysRevLett.95.226801

C.Weeks and M. Franz, Topological insulators on the Lieb and perovskite lattices, Phys. Rev. B 82 (2010) 085310. DOI: https://doi.org/10.1103/PhysRevB.82.085310

C. Weeks and M. Franz, Flat bands with nontrivial topology in three dimensions, Phys. Rev. B 85 (2012) 041104. DOI: https://doi.org/10.1103/PhysRevB.85.041104

Minh-Tien Tran, Hong-Son Nguyen and Duc-Anh Le, Emergence of magnetic topological states in topological insulators doped with magnetic impurities, Phys. Rev. B 93 (2016) 155160. DOI: https://doi.org/10.1103/PhysRevB.93.155160

Thanh-Mai Thi Tran, Duc-Anh Le, Tuan-Minh Pham, Kim-Thanh Thi Nguyen, Minh-Tien Tran, Phys. Rev. B 102 (2020) 205124.

D. Grohol, K. Matan, J. H. Cho, S. H. Lee, J. W. Lynn, D. G. Nocera and Y. S. Lee, Spin chirality on a twodimensional frustrated lattice, Nat. Mat. 4 (2005) 323. DOI: https://doi.org/10.1038/nmat1353

G. D. Mahan, Many-Particle Physics, 3rd edition (Plenum publisher, 2000). DOI: https://doi.org/10.1007/978-1-4757-5714-9

Minh-Tien Tran, Duong-Bo Nguyen, Hong-Son Nguyen, and Thanh-Mai Thi Tran, Topological Green function of interacting systems, arXiv:2104.02344 [cond-mat.str-el].

T. I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, and P. T¨orm¨a, Topological phase transitions in the repulsively interacting haldane-hubbard model, Phys. Rev. Lett. 116 (2016) 225305. DOI: https://doi.org/10.1103/PhysRevLett.116.225305

Downloads

Published

25-03-2022

How to Cite

[1]
T. M. Tran and M. T. Tran, Impact of Magnetic Field on Magnetic States in Kagome Magnets, Comm. Phys. 32 (2022) 29. DOI: https://doi.org/10.15625/0868-3166/16920.

Issue

Section

Papers
Received 13-02-2022
Accepted 23-03-2022
Published 25-03-2022