Analysis of Temperature-dependent Extended X-ray Absorption Fine Structure Oscillation of Distorted Crystalline Cadmium
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16890Keywords:
crystalline cadmium, anharmonic correlated Debye model, Debye-Waller factor, EXAFS oscillationAbstract
In this paper, the temperature-dependent extended X-ray absorption fine structure (EXAFS) of distorted crystalline cadmium has been analyzed using an efficient calculation-model. The analysis procedure is based on evaluating the influence of temperature on the phase shift and amplitude reduction of EXAFS oscillation that is expressed in terms of the EXAFS Debye-Waller factor. The anharmonic EXAFS cumulants are calculated by expanding the anharmonic correlated Debye model based on the anharmonic effective potential that depends on the structural characteristics of distorted crystalline cadmium. The numerical results satisfy well with those obtained using the experimental data and other models at various temperatures. The obtained results indicate that this theoretical model is useful for calculating and analyzing the experimental EXAFS data of distorted crystalline metals.
Downloads
Metrics
References
S. Shikata, K. Yamaguchi, A. Fujiwara, Y. Tamenori, K. Tsuruta, T. Yamada, S.S. Nicley, K. Haenen, S. Koizumi, X-ray absorption near edge structure and extended X-ray absorption fine structure studies of P doped (111) diamond, Diam. Relat. Mater. 105 (2020) 107769.
DOI: https://doi.org/10.1016/j.diamond.2020.107769 DOI: https://doi.org/10.1016/j.diamond.2020.107769
P. Fornasini, R. Grisenti, M. Dapiaggi, and G. Agostini, Local structural distortions in SnTe investigated by EXAFS, J. Phys.: Condens. Matter 33 (2021) 295404.
DOI: https://doi.org/10.1088/1361-648X/ac0082 DOI: https://doi.org/10.1088/1361-648X/ac0082
T.S. Tien, Temperature-Dependent EXAFS Debye–Waller Factor of Distorted HCP Crystals, J. Phys. Soc. Jpn. 91 (2022) 054703.
DOI: https://doi.org/10.7566/JPSJ.91.054703 DOI: https://doi.org/10.7566/JPSJ.91.054703
T. Yokoyama, K. Kobayashi, T. Ohta, and A. Ugawa, Anharmonic interatomic potentials of diatomic and linear triatomic molecules studied by extended x-ray-absorption fine structure, Phys. Rev. B 53 (1996) 6111.
DOI: https://doi.org/10.1103/PhysRevB.53.6111 DOI: https://doi.org/10.1103/PhysRevB.53.6111
T. S. Tien, Effect of the non-ideal axial ratio c/a on anharmonic EXAFS oscillation of h.c.p. crystals, J. Synchrotron Rad. 28 (2021) 1544.
DOI: https://doi.org/10.1107/S1600577521007256 DOI: https://doi.org/10.1107/S1600577521007256
J. J. Rehr, F. D. Vila, J. J. Kas, N. Y. Hirshberg, K. Kowalski, and B. Peng, Equation of motion coupled-cluster cumulant approach for intrinsic losses in x-ray spectra, J. Chem. Phys. 152 (2020).
DOI: https://doi.org/10.1063/5.0004865 DOI: https://doi.org/10.1063/5.0004865
T. Yokoyama and S. Chaveanghong, Anharmonicity in elastic constants and extended x-ray-absorption fine structure cumulants, Phys. Rev. Materials 3 (2019) 033607.
DOI: https://doi.org/10.1103/PhysRevMaterials.3.033607 DOI: https://doi.org/10.1103/PhysRevMaterials.3.033607
R. B. Greegor and F. W. Lytle, Extended x-ray absorption fine structure determination of thermal disorder in Cu: Comparison of theory and experiment, Phys. Rev. B 20 (1979) 4902.
DOI: https://doi.org/10.1103/PhysRevB.20.4902 DOI: https://doi.org/10.1103/PhysRevB.20.4902
G. Bunker, Application of the ratio method of EXAFS analysis to disordered systems, Nucl. Instrum. Methods 207 (1983) 437.
DOI: https://doi.org/10.1016/0167-5087(83)90655-5 DOI: https://doi.org/10.1016/0167-5087(83)90655-5
J. J. Rehr and R. C. Albers, Theoretical approaches to x-ray absorption fine structure, Rev. Mod. Phys. 72 (2000) 621.
DOI: https://doi.org/10.1103/RevModPhys.72.621 DOI: https://doi.org/10.1103/RevModPhys.72.621
M. Newville, EXAFS analysis using FEFF and FEFFIT, J. Synchrotron Rad. 8 (2001) 96.
DOI: https://doi.org/10.1107/S0909049500016290 DOI: https://doi.org/10.1107/S0909049500016290
M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Analysis of multiple-scattering XAFS data using theoretical standards, Physica B 208-209 (1995)154.
DOI: https://doi.org/10.1016/0921-4526(94)00655-F DOI: https://doi.org/10.1016/0921-4526(94)00655-F
A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B 58 (1998).
DOI: https://doi.org/10.1103/PhysRevB.58.7565 DOI: https://doi.org/10.1103/PhysRevB.58.7565
S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Multiple-scattering calculations of x-ray-absorption spectra, Phys. Rev. B 52 (1995) 2995.
DOI: https://doi.org/10.1103/PhysRevB.52.2995 DOI: https://doi.org/10.1103/PhysRevB.52.2995
J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, Theoretical x-ray absorption fine structure standards, J. Am. Chem. Soc. 113 (1991) 5135.
DOI: https://doi.org/10.1021/ja00014a001 DOI: https://doi.org/10.1021/ja00014a001
T. S. Tien, Investigation of the anharmonic EXAFS oscillation of distorted HCP crystals based on extending quantum anharmonic correlated Einstein model, Jpn. J. Appl. Phys. 60 (2021) 112001.
DOI: https://doi.org/10.35848/1347-4065/ac21b3 DOI: https://doi.org/10.35848/1347-4065/ac21b3
G. Buxbaum and G. Pfaff, Industrial Inorganic Pigments, 3rd ed., Wiley-VCH, New York (2005). DOI: https://doi.org/10.1002/3527603735
M. Hou, L. Li,, and M. Zhuang, Research on application mechanism of cadmium in new energy vehicle charging group, IOP Conf. Ser.: Earth Environ. Sci. 227 (2019) 052046.
DOI: https://doi.org/10.1088/1755-1315/227/5/052046 DOI: https://doi.org/10.1088/1755-1315/227/5/052046
A. M. Kadim, Applications of Cadmium Telluride (CdTe) in Nanotechnology, IntechOpen, London (2019). DOI: https://doi.org/10.5772/intechopen.85506
N. E. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, Nickel-cadmium batteries with pocket electrodes as hydrogen energy storage units of high-capacity, Journal of Energy Storage 39 (2021) 102597.
DOI: https://doi.org/10.1016/j.est.2021.102597 DOI: https://doi.org/10.1016/j.est.2021.102597
N. V. Hung, L. H. Hung, T. S. Tien, and R. R. Frahm, Anharmonic effective potential, local force constant and EXAFS of HCP crystals: Theory and comparison to experiment, Int. J. Mod. Phys. B 22 (2008) 5155.
DOI: https://doi.org/10.1142/S0217979208049285 DOI: https://doi.org/10.1142/S0217979208049285
N. V. Hung, T. S. Tien, N. B. Duc, and D. Q. Vuong, High-order expanded XAFS Debye Waller factors of HCP crystals based on classical anharmonic correlated Einstein model, Mod. Phys. Lett. B 28 (2014) 1450174.
DOI: https://doi.org/10.1142/S0217984914501747 DOI: https://doi.org/10.1142/S0217984914501747
N. V. Hung, N. B. Trung, and B. Kirchner, Anharmonic correlated Debye model Debye–Waller factors, Physica B 405 (2010) 2519.
DOI: https://doi.org/10.1016/j.physb.2010.03.013 DOI: https://doi.org/10.1016/j.physb.2010.03.013
N. B. Duc, N. V. Hung, H. D. Khoa, D. Q. Vuong, and T. S. Tien, Thermodynamic Properties and Anharmonic Effects in XAFS Based on Anharmonic Correlated Debye Model Debye–Waller Factors, Adv. Mater. Sci. Eng. 2018 (2018) 3263170.
DOI: https://doi.org/10.1155/2018/3263170 DOI: https://doi.org/10.1155/2018/3263170
N. B. Duc, V. Q. Tho, T. S. Tien, D. Q. Khoa, and H. K. Hieu, Pressure and temperature dependence of EXAFS Debye-Waller factor of platinum, Radiat. Phys. Chem. 149 (2018) 61.
DOI: https://doi.org/10.1016/j.radphyschem.2018.03.017 DOI: https://doi.org/10.1016/j.radphyschem.2018.03.017
T. S. Tien, Analysis of EXAFS oscillation of monocrystalline diamond-semiconductors using anharmonic correlated Debye model, Eur. Phys. J. Plus. 136 (2021) 539.
DOI: https://doi.org/10.1140/epjp/s13360-021-01378-z DOI: https://doi.org/10.1140/epjp/s13360-021-01378-z
E. D. Crozier, J. J. Rehr, and R. Ingalls, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, XANES, edited by D. C. Koningsberger and R. Prins, Chap. 9, Wiley, New York (1988).
T. S. Tien, Advances in studies of the temperature dependence of the EXAFS amplitude and phase of FCC crystals, J. Phys. D: Appl. Phys. 53 (2020) 315303.
DOI: https://doi.org/10.1088/1361-6463/ab8249 DOI: https://doi.org/10.1088/1361-6463/ab8249
N. V. Hung, T. S. Tien, and L. H. Hung, High-order anharmonic effective potentials and EXAFS cumulants of FCC crystals calculated from a Morse interaction potential, Communications in Physics 18 (2008) 75.
L. Tröger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, and K. Baberschke, Determination of bond lengths, atomic mean-square relative displacements, and local thermal expansion by means of soft-x-ray photoabsorption, Phys. Rev. B 49 (1994) 888.
DOI: https://doi.org/10.1103/PhysRevB.49.888 DOI: https://doi.org/10.1103/PhysRevB.49.888
A. Sanson, On the neglecting of higher-order cumulants in EXAFS data analysis, J. Synchrotron Radiat. 16 (2009) 864.
DOI: https://doi.org/10.1107/S0909049509037716 DOI: https://doi.org/10.1107/S0909049509037716
P. Fornasini, R. Grisenti, M. Dapiaggi, G. Agostini, and T. Miyanaga, Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure, J. Chem. Phys. 147 (2017) 044503.
DOI: https://doi.org/10.1063/1.4995435 DOI: https://doi.org/10.1063/1.4995435
P. M. Morse, Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels, Phys. Rev. 34 (1929) 57.
DOI: https://doi.org/10.1103/PhysRev.34.57 DOI: https://doi.org/10.1103/PhysRev.34.57
L. A. Girifalco and V. G. Weizer, Application of the Morse Potential Function to Cubic Metals, Phys. Rev. 114 (1959) 687.
DOI: https://doi.org/10.1103/PhysRev.114.687 DOI: https://doi.org/10.1103/PhysRev.114.687
N. V. Hung and J. J. Rehr, Anharmonic correlated Einstein-model Debye-Waller factors, Phys. Rev. B 56 (1997) 43.
DOI: https://doi.org/10.1103/PhysRevB.56.43 DOI: https://doi.org/10.1103/PhysRevB.56.43
P. Enghag, Encyclopedia of the elements: Technical data, history, processing, applications, Wiley-VCH, Weinheim (2004). DOI: https://doi.org/10.1002/9783527612338
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 04-07-2022
Published 17-08-2022