Optical Properties of 1D ZnO/MoS\(_2\) Heterostructures Synthesized by Thermal Evaporation Method
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16867Keywords:
1D ZnO/MoS2, thermal co-evaporation method, lattice strain, 1D ZnO/MoS2 heterostructuresAbstract
MoS2 material attracts a great attention from researchers due to its graphene-like structure and the bandgap difference between its hexagonal monolayer and bulks. Recently, ZnO/MoS2 heterostructures have been received significant interest due to their distinguished properties. In this study, one-dimensional ZnO and ZnO/MoS2 heterostructures were successfully synthesized by a thermal co-evaporation method. Compare with ZnO, the band-to-band emission of ZnO/MoS2 heterostructures establishes a “blueshift” towards a shorter wavelength. It could be explained by the lattice strain in ZnO/MoS2 heterostructures due to the difference of primitive cell of ZnO and MoS2. Additionally, the quench in the visible region of the PL spectrum of ZnO/MoS2 heterostructures also explains the reduction of the defect in ZnO due to the presence of MoS2.
Downloads
Metrics
References
A.B. Djuris, Y.H. Leung, Optical Properties of ZnO Nanostructures, Small. 2 (2006) 944–961. DOI: https://doi.org/10.1002/smll.200600134
P. Liang, B. Tai, H. Shu, T. Shen, Q. Dong, Doping properties of MoS2/ZnO (0001) Het- erojunction Ruled by Interfacial micro-struc- ture: from first principles, Solid State Commun. 204 (2015) 67–71. DOI: https://doi.org/10.1016/j.ssc.2014.12.015
K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films, Appl. Phys. Lett. 79 (2001) 988–990. DOI: https://doi.org/10.1063/1.1384478
J.R. Neal, A.J. Behan, R.M. Ibrahim, H.J. Blythe, M. Ziese, A.M. Fox, G.A. Gehring, Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films, Phys. Rev. Lett. 96 (2006) 1–4. DOI: https://doi.org/10.1103/PhysRevLett.96.197208
L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A.M. Asiri, L. Chen, B. Tang, X. Sun, Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies, Adv. Mater. 30 (2018) 2–7. DOI: https://doi.org/10.1002/adma.201800191
L. David, R. Bhandavat, G. Singh, D.E.T. Al, MoS2/graphene Composite Paper For Sodium-Ion Battery Electrodes, ACS Nano 8 (2014) 1759–1770. DOI: https://doi.org/10.1021/nn406156b
M.A. Kang, S.J. Kim, W. Song, S. jin Chang, C.Y. Park, S. Myung, J. Lim, S.S. Lee, K.S. An, Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method, Carbon 116 (2017) 167–173.. DOI: https://doi.org/10.1016/j.carbon.2017.02.001
H. Yu, C.M. Liu, X.Y. Huang, M.Y. Lei, The microstructure and photoluminescence of ZnO-MoS2 core shell nano-materials, Mater. Res. Express 4 (2017) 015024.
M.Y. Lei, C.M. Liu, Y.. Zhou, S.. Yan, S.. Han, W. Liu, X. Xiang, X.. Zu, Microstructure and photoluminescence of MoS2 decorated ZnO nanorods, Chinese Journal of Physics 54 (2016) 51–59. DOI: https://doi.org/10.1016/j.cjph.2016.03.003
S.P. Usha, B.D. Gupta, Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor, Biosens. Bioelectron. 101 (2018) 135–145. DOI: https://doi.org/10.1016/j.bios.2017.10.029
R. Selvaraj, K.R. Kalimuthu, V. Kalimuthu, A type-II MoS2/ZnO heterostructure with enhanced photocatalytic activity, Mater. Lett. 243 (2019) 183–186. DOI: https://doi.org/10.1016/j.matlet.2019.02.022
S. Wang, C. Ren, H. Tian, J. Yu, M. Sun, MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study, Phys. Chem. Chem. Phys. 20 (2018) 13394–13399. DOI: https://doi.org/10.1039/C8CP00808F
Y.H. Zhou, Z. Bin Zhang, P. Xu, H. Zhang, B. Wang, UV-Visible Photodetector Based on I-type Heterostructure of ZnO-QDs/Monolayer MoS2, Nanoscale Res. Lett. 14 (2019). DOI: https://doi.org/10.1186/s11671-019-3183-8
K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, N. Dai, Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission, Nano Res. 8 (2015) 743–750. DOI: https://doi.org/10.1007/s12274-014-0557-1
E. Benavente, F. Durán, C. Sotomayor-Torres, G. González, Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity, J. Phys. Chem. Solids. 113 (2018) 119–124. DOI: https://doi.org/10.1016/j.jpcs.2017.10.027
W. Jian, X. Cheng, Y. Huang, Y. You, R. Zhou, T. Sun, J. Xu, Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting, Chem. Eng. J. 328 (2017) 474–483. DOI: https://doi.org/10.1016/j.cej.2017.07.056
X. Chang, X. Qiao, K. Li, P. Wang, Y. Xiong, X. Li, F. Xia, Q. Xue, UV assisted ppb-level acetone detection based on hollow ZnO/MoS2 nanosheets core/shell heterostructures at low temperature, Sensors Actuators, B Chem. 317 (2020) 128208. DOI: https://doi.org/10.1016/j.snb.2020.128208
L. Ning, T. Jiang, Z. Shao, K. Ding, X. Zhang, J. Jie, Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection, J. Mater. Chem. C. 6 (2018) 7077–7084. DOI: https://doi.org/10.1039/C8TC02139B
S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, H. Wada, Optical properties of zno nanoparticles capped with polymers, Materials 4 (2011) 1132–1143. DOI: https://doi.org/10.3390/ma4061132
K. Tian, Y. Zhang, S. Zhang, Y. Dong, Electrogenerated Chemiluminescence of ZnO/MoS2 Nanocomposite and Its Application for Cysteine Detection , J. Electrochem. Soc. 166 (2019) H527–H533. DOI: https://doi.org/10.1149/2.0861912jes
Y. Quan, J. Yao, S. Yang, L. Chen, J. Li, Y. Liu, J. Lang, H. Shen, Y. Wang, Y. Wang, J. Yang, M. Gao, ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A, Microchim. Acta. 186 (2019) 4–11. DOI: https://doi.org/10.1007/s00604-019-3702-4
S.A. Khan, T. Khan, Zulfiqar, M. Khan, Enhanced photoluminescence performance of MoS2 nanostructures after amalgamation with ZnO NPs, Optik 220 (2020). DOI: https://doi.org/10.1016/j.ijleo.2020.165201
A. Saravanan, B.R. Huang, J.P. Chu, A. Prasannan, H.C. Tsai, Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties, Sensors Actuators, B Chem. 292 (2019) 70–79. DOI: https://doi.org/10.1016/j.snb.2019.04.108
A. Báez-Rodríguez, L. Zamora-Peredo, M.G. Soriano-Rosales, J. Hernández-Torres, L. García-González, R.M. Calderón-Olvera, M. García-Hipólito, J. Guzmán-Mendoza, C. Falcony, ZnO nanocolumns synthesized by chemical bath process and spray pyrolysis: Ultrasonic and mechanical dispersion of ZnO seeds and their effect on optical and morphological properties, J. Lumin. 218 (2020) 1–8. DOI: https://doi.org/10.1016/j.jlumin.2019.116830
R. Zhang, P.G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods, Solid State Sci. 11 (2009) 865–869. DOI: https://doi.org/10.1016/j.solidstatesciences.2008.10.016
X. Jia, Z. Lin, T. Zhang, B. Puthen-Veettil, T. Yang, K. Nomoto, J. Ding, G. Conibeer, I. Perez-Wurfl, Accurate analysis of the size distribution and crystallinity of boron doped Si nanocrystals: Via Raman and PL spectra, RSC Adv. 7 (2017) 34244–34250. DOI: https://doi.org/10.1039/C7RA04472K
Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage, Adv. Energy Mater. 8 (2018) 1–29. DOI: https://doi.org/10.1002/aenm.201703482
A.A. Murthy, Y. Li, E. Palacios, Q. Li, S. Hao, J.G. Distefano, C. Wolverton, K. Aydin, X. Chen, V.P. Dravid, Optically Active 1D MoS2 Nanobelts, ACS Appl. Mater. Interfaces. 10 (2018) 6799–6804. DOI: https://doi.org/10.1021/acsami.7b16892
G. Faglia, M. Ferroni, T.T. le Dang, M. Donarelli, F. Rigoni, C. Baratto, Vertically coupling ZnO nanorods onto MoS2 flakes for optical gas sensing, Chemosensors. 8 (2020) 1–12. DOI: https://doi.org/10.3390/chemosensors8010019
W. Mei, C. Chen, X. Chen, X. Liu, Z. Yang, F. Ding, Z. Chao, T. Liu, Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight, J. Colloid Interface Sci. 530 (2018) 714–724. DOI: https://doi.org/10.1016/j.jcis.2018.07.015
H. Yu, C.M. Liu, X.Y. Huang, M.Y. Lei, The microstructure and photoluminescence of ZnO–MoS2 core shell nano-materials, Mater. Res. Express. 4 (2017) 015024. DOI: https://doi.org/10.1088/2053-1591/aa5851
P. V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, R.E. Kroon, O.M. Ntwaeaborwa, Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites, Phys. B Condens. Matter. 507 (2017) 13–20. DOI: https://doi.org/10.1016/j.physb.2016.11.031
T. Dixit, A. Arora, A. Krishnan, K.L. Ganapathi, P.K. Nayak, M.S.R. Rao, Near Infrared Random Lasing in Multilayer MoS2, ACS Omega. 3 (2018) 14097–14102. DOI: https://doi.org/10.1021/acsomega.8b01287
T. Tanabe, T. Ito, Y. Oyama, Structure and optical properties of 2D layered MoS2 crystals implemented with novel friction induced crystal growth, AIP Adv. 8 (2018). DOI: https://doi.org/10.1063/1.5022247
D.Q. Trung, N. V. Quang, M.T. Tran, N. V. Du, N. Tu, N.D. Hung, D.X. Viet, D.D. Anh, P.T. Huy, Single-composition Al3+ -singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications , Dalt. Trans. 50 (2021) 9037–9050. DOI: https://doi.org/10.1039/D1DT00971K
X. Xu, C. Xu, Z. Shi, C. Yang, B. Yu, Identification of visible emission from ZnO quantum dots: Excitation- dependence and size-dependence, Journal of Applied Physics 111 (2012) 083521. DOI: https://doi.org/10.1063/1.4705395
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 03-06-2022
Published 22-06-2022