Vol. 32 No. 3 (2022)
Papers

Optical Properties of 1D ZnO/MoS\(_2\) Heterostructures Synthesized by Thermal Evaporation Method

Thi Ha Thu Luu
Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology and Faculty of Materials Science and Engineering, Phenikaa University
Quang Trung Do
Faculty of Fundamental Sciences, Phenikaa University
Manh Trung Tran
Phenikaa University
Tu Nguyen
Faculty of Fundamental Sciences, Phenikaa University
Duy Hung Nguyen
Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology and Faculty of Materials Science and Engineering, Phenikaa University
Thanh Huy Pham
Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha-Dong district, Hanoi 10000, Vietnam

Published 22-06-2022

Keywords

  • 1D ZnO/MoS2,
  • thermal co-evaporation method,
  • lattice strain,
  • 1D ZnO/MoS2 heterostructures

How to Cite

Luu, T. H. T., Do, Q. T., Tran, M. T., Nguyen, T., Nguyen, D. H., & Pham, T. H. (2022). Optical Properties of 1D ZnO/MoS\(_2\) Heterostructures Synthesized by Thermal Evaporation Method. Communications in Physics, 32(3), 319. https://doi.org/10.15625/0868-3166/16867

Abstract

MoS2 material attracts a great attention from researchers due to its graphene-like structure and the bandgap difference between its hexagonal monolayer and bulks. Recently, ZnO/MoS2 heterostructures have been received significant interest due to their distinguished properties. In this study, one-dimensional ZnO and ZnO/MoS2 heterostructures were successfully synthesized by a thermal co-evaporation method. Compare with ZnO, the band-to-band emission of ZnO/MoS2 heterostructures establishes a “blueshift” towards a shorter wavelength. It could be explained by the lattice strain in ZnO/MoS2 heterostructures due to the difference of primitive cell of ZnO and MoS2. Additionally, the quench in the visible region of the PL spectrum of ZnO/MoS2 heterostructures also explains the reduction of the defect in ZnO due to the presence of MoS2.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. A.B. Djuris, Y.H. Leung, Optical Properties of ZnO Nanostructures, Small. 2 (2006) 944–961. DOI: https://doi.org/10.1002/smll.200600134
  2. P. Liang, B. Tai, H. Shu, T. Shen, Q. Dong, Doping properties of MoS2/ZnO (0001) Het- erojunction Ruled by Interfacial micro-struc- ture: from first principles, Solid State Commun. 204 (2015) 67–71. DOI: https://doi.org/10.1016/j.ssc.2014.12.015
  3. K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films, Appl. Phys. Lett. 79 (2001) 988–990. DOI: https://doi.org/10.1063/1.1384478
  4. J.R. Neal, A.J. Behan, R.M. Ibrahim, H.J. Blythe, M. Ziese, A.M. Fox, G.A. Gehring, Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films, Phys. Rev. Lett. 96 (2006) 1–4. DOI: https://doi.org/10.1103/PhysRevLett.96.197208
  5. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A.M. Asiri, L. Chen, B. Tang, X. Sun, Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies, Adv. Mater. 30 (2018) 2–7. DOI: https://doi.org/10.1002/adma.201800191
  6. L. David, R. Bhandavat, G. Singh, D.E.T. Al, MoS2/graphene Composite Paper For Sodium-Ion Battery Electrodes, ACS Nano 8 (2014) 1759–1770. DOI: https://doi.org/10.1021/nn406156b
  7. M.A. Kang, S.J. Kim, W. Song, S. jin Chang, C.Y. Park, S. Myung, J. Lim, S.S. Lee, K.S. An, Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method, Carbon 116 (2017) 167–173.. DOI: https://doi.org/10.1016/j.carbon.2017.02.001
  8. H. Yu, C.M. Liu, X.Y. Huang, M.Y. Lei, The microstructure and photoluminescence of ZnO-MoS2 core shell nano-materials, Mater. Res. Express 4 (2017) 015024.
  9. M.Y. Lei, C.M. Liu, Y.. Zhou, S.. Yan, S.. Han, W. Liu, X. Xiang, X.. Zu, Microstructure and photoluminescence of MoS2 decorated ZnO nanorods, Chinese Journal of Physics 54 (2016) 51–59. DOI: https://doi.org/10.1016/j.cjph.2016.03.003
  10. S.P. Usha, B.D. Gupta, Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor, Biosens. Bioelectron. 101 (2018) 135–145. DOI: https://doi.org/10.1016/j.bios.2017.10.029
  11. R. Selvaraj, K.R. Kalimuthu, V. Kalimuthu, A type-II MoS2/ZnO heterostructure with enhanced photocatalytic activity, Mater. Lett. 243 (2019) 183–186. DOI: https://doi.org/10.1016/j.matlet.2019.02.022
  12. S. Wang, C. Ren, H. Tian, J. Yu, M. Sun, MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study, Phys. Chem. Chem. Phys. 20 (2018) 13394–13399. DOI: https://doi.org/10.1039/C8CP00808F
  13. Y.H. Zhou, Z. Bin Zhang, P. Xu, H. Zhang, B. Wang, UV-Visible Photodetector Based on I-type Heterostructure of ZnO-QDs/Monolayer MoS2, Nanoscale Res. Lett. 14 (2019). DOI: https://doi.org/10.1186/s11671-019-3183-8
  14. K. Zhang, Y. Zhang, T. Zhang, W. Dong, T. Wei, Y. Sun, X. Chen, G. Shen, N. Dai, Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission, Nano Res. 8 (2015) 743–750. DOI: https://doi.org/10.1007/s12274-014-0557-1
  15. E. Benavente, F. Durán, C. Sotomayor-Torres, G. González, Heterostructured layered hybrid ZnO/MoS2 nanosheets with enhanced visible light photocatalytic activity, J. Phys. Chem. Solids. 113 (2018) 119–124. DOI: https://doi.org/10.1016/j.jpcs.2017.10.027
  16. W. Jian, X. Cheng, Y. Huang, Y. You, R. Zhou, T. Sun, J. Xu, Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting, Chem. Eng. J. 328 (2017) 474–483. DOI: https://doi.org/10.1016/j.cej.2017.07.056
  17. X. Chang, X. Qiao, K. Li, P. Wang, Y. Xiong, X. Li, F. Xia, Q. Xue, UV assisted ppb-level acetone detection based on hollow ZnO/MoS2 nanosheets core/shell heterostructures at low temperature, Sensors Actuators, B Chem. 317 (2020) 128208. DOI: https://doi.org/10.1016/j.snb.2020.128208
  18. L. Ning, T. Jiang, Z. Shao, K. Ding, X. Zhang, J. Jie, Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection, J. Mater. Chem. C. 6 (2018) 7077–7084. DOI: https://doi.org/10.1039/C8TC02139B
  19. S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, H. Wada, Optical properties of zno nanoparticles capped with polymers, Materials 4 (2011) 1132–1143. DOI: https://doi.org/10.3390/ma4061132
  20. K. Tian, Y. Zhang, S. Zhang, Y. Dong, Electrogenerated Chemiluminescence of ZnO/MoS2 Nanocomposite and Its Application for Cysteine Detection , J. Electrochem. Soc. 166 (2019) H527–H533. DOI: https://doi.org/10.1149/2.0861912jes
  21. Y. Quan, J. Yao, S. Yang, L. Chen, J. Li, Y. Liu, J. Lang, H. Shen, Y. Wang, Y. Wang, J. Yang, M. Gao, ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A, Microchim. Acta. 186 (2019) 4–11. DOI: https://doi.org/10.1007/s00604-019-3702-4
  22. S.A. Khan, T. Khan, Zulfiqar, M. Khan, Enhanced photoluminescence performance of MoS2 nanostructures after amalgamation with ZnO NPs, Optik 220 (2020). DOI: https://doi.org/10.1016/j.ijleo.2020.165201
  23. A. Saravanan, B.R. Huang, J.P. Chu, A. Prasannan, H.C. Tsai, Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties, Sensors Actuators, B Chem. 292 (2019) 70–79. DOI: https://doi.org/10.1016/j.snb.2019.04.108
  24. A. Báez-Rodríguez, L. Zamora-Peredo, M.G. Soriano-Rosales, J. Hernández-Torres, L. García-González, R.M. Calderón-Olvera, M. García-Hipólito, J. Guzmán-Mendoza, C. Falcony, ZnO nanocolumns synthesized by chemical bath process and spray pyrolysis: Ultrasonic and mechanical dispersion of ZnO seeds and their effect on optical and morphological properties, J. Lumin. 218 (2020) 1–8. DOI: https://doi.org/10.1016/j.jlumin.2019.116830
  25. R. Zhang, P.G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods, Solid State Sci. 11 (2009) 865–869. DOI: https://doi.org/10.1016/j.solidstatesciences.2008.10.016
  26. X. Jia, Z. Lin, T. Zhang, B. Puthen-Veettil, T. Yang, K. Nomoto, J. Ding, G. Conibeer, I. Perez-Wurfl, Accurate analysis of the size distribution and crystallinity of boron doped Si nanocrystals: Via Raman and PL spectra, RSC Adv. 7 (2017) 34244–34250. DOI: https://doi.org/10.1039/C7RA04472K
  27. Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage, Adv. Energy Mater. 8 (2018) 1–29. DOI: https://doi.org/10.1002/aenm.201703482
  28. A.A. Murthy, Y. Li, E. Palacios, Q. Li, S. Hao, J.G. Distefano, C. Wolverton, K. Aydin, X. Chen, V.P. Dravid, Optically Active 1D MoS2 Nanobelts, ACS Appl. Mater. Interfaces. 10 (2018) 6799–6804. DOI: https://doi.org/10.1021/acsami.7b16892
  29. G. Faglia, M. Ferroni, T.T. le Dang, M. Donarelli, F. Rigoni, C. Baratto, Vertically coupling ZnO nanorods onto MoS2 flakes for optical gas sensing, Chemosensors. 8 (2020) 1–12. DOI: https://doi.org/10.3390/chemosensors8010019
  30. W. Mei, C. Chen, X. Chen, X. Liu, Z. Yang, F. Ding, Z. Chao, T. Liu, Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight, J. Colloid Interface Sci. 530 (2018) 714–724. DOI: https://doi.org/10.1016/j.jcis.2018.07.015
  31. H. Yu, C.M. Liu, X.Y. Huang, M.Y. Lei, The microstructure and photoluminescence of ZnO–MoS2 core shell nano-materials, Mater. Res. Express. 4 (2017) 015024. DOI: https://doi.org/10.1088/2053-1591/aa5851
  32. P. V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, R.E. Kroon, O.M. Ntwaeaborwa, Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites, Phys. B Condens. Matter. 507 (2017) 13–20. DOI: https://doi.org/10.1016/j.physb.2016.11.031
  33. T. Dixit, A. Arora, A. Krishnan, K.L. Ganapathi, P.K. Nayak, M.S.R. Rao, Near Infrared Random Lasing in Multilayer MoS2, ACS Omega. 3 (2018) 14097–14102. DOI: https://doi.org/10.1021/acsomega.8b01287
  34. T. Tanabe, T. Ito, Y. Oyama, Structure and optical properties of 2D layered MoS2 crystals implemented with novel friction induced crystal growth, AIP Adv. 8 (2018). DOI: https://doi.org/10.1063/1.5022247
  35. D.Q. Trung, N. V. Quang, M.T. Tran, N. V. Du, N. Tu, N.D. Hung, D.X. Viet, D.D. Anh, P.T. Huy, Single-composition Al3+ -singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications , Dalt. Trans. 50 (2021) 9037–9050. DOI: https://doi.org/10.1039/D1DT00971K
  36. X. Xu, C. Xu, Z. Shi, C. Yang, B. Yu, Identification of visible emission from ZnO quantum dots: Excitation- dependence and size-dependence, Journal of Applied Physics 111 (2012) 083521. DOI: https://doi.org/10.1063/1.4705395