Vol. 32 No. 3 (2022)
Papers

Electron Transport Through Experimentally Controllable Parabolic Bubbles on Graphene Nanoribbons

Mai-Chung Nguyen
\(^1\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
\(^2\)Energy Department, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Huy-Viet Nguyen
Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

Published 27-03-2022

How to Cite

Nguyen, M.-C., & Nguyen, H.-V. (2022). Electron Transport Through Experimentally Controllable Parabolic Bubbles on Graphene Nanoribbons. Communications in Physics, 32(3), 265. https://doi.org/10.15625/0868-3166/16763

Abstract

We present a theoretical study of electron transport properties through experimentally controllable graphene nanobubbles [P. Jia et al., Nat. Commun. 10 (2019) 1] employing a tight-binding model and the non-equilibrium Green's function formalism. Sharp conductance peaks are observed at low energy region which signifies the emergence of quasi-bound states caused by pseudomagnetic field in the strained nanobubbles. Analysis based on local density of states reveals the nature of electron transmission at peak energies. Our results also show that the emergence of quasi-bound states and its role in electron transport depend on both strain strength and bubble size: when the strain or size of the bubble increases, more quasi-bound states emerge and resonant tunnelling assisted by these quasi-bound states becomes dominant.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A.Firsov, Science 306 (2004) 666. DOI: https://doi.org/10.1126/science.1102896
  2. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81 (2009) 109. DOI: https://doi.org/10.1103/RevModPhys.81.109
  3. V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103 (2009) 046801. DOI: https://doi.org/10.1103/PhysRevLett.103.046801
  4. C. Si, Z. Sun and F. Liu, Nanoscale 8 (2016) 3207. DOI: https://doi.org/10.1039/C5NR07755A
  5. S. Yang, Y. Chen and C. Jiang, InfoMat 3 (2021) 397. DOI: https://doi.org/10.1002/inf2.12177
  6. F. Guinea, M. Katsnelson and A. Geim, Nat. Phys. 6 (2010) 30. DOI: https://doi.org/10.1038/nphys1420
  7. N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. C. Neto and M. F. Crommie, Science 329 (2010) 544. DOI: https://doi.org/10.1126/science.1191700
  8. P. Jia, W. Chen, J. Qiao, M. Zhang, X. Zheng, Z. Xue, R. Liang, C. Tian, L. He, Z. Di et al., Nat. Commun. 10 (2019) 1 DOI: https://doi.org/10.1038/s41467-019-11038-7
  9. R. Carrillo-Bastos, D. Faria, A. Latge ́, F. Mireles and N. Sandler, Phys. Rev. B 90 (2014) 041411. [10] V.-T. Tran, J. Saint-Martin and P. Dollfus, Phys. Rev. B 102 (2020) 075425. DOI: https://doi.org/10.1103/PhysRevB.90.041411
  10. D. A. Bahamon and V. M. Pereira, Phys. Rev. B 88 (2013) 195416. DOI: https://doi.org/10.1103/PhysRevB.88.195416
  11. V. M. Pereira, A. H. Castro Neto and N. M. R. Peres, Phys. Rev. B 80 (2009) 045401. DOI: https://doi.org/10.1103/PhysRevB.80.045401
  12. M. C. Nguyen, V. H. Nguyen, H.-V. Nguyen and P. Dollfus, Semicond. Sci. Technol 29 (2014) 115024. DOI: https://doi.org/10.1088/0268-1242/29/11/115024
  13. M. C. Nguyen, V. H. Nguyen, H.-V. Nguyen, J. Saint-Martin and P. Dollfus, Physica E 73 (2015) 207. [15] M. Anantram, M. S. Lundstrom and D. E. Nikonov, Proceedings of the IEEE 96 (2008) 1511. DOI: https://doi.org/10.1016/j.physe.2015.05.020
  14. C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electron. 12 (2013) 203. DOI: https://doi.org/10.1007/s10825-013-0458-7
  15. R. Haydock, V. Heine and M. Kelly, J. Phys. C: Solid State Phys. 5 (1972) 2845. DOI: https://doi.org/10.1088/0022-3719/5/20/004
  16. Z. Qi, D. Bahamon, V. M. Pereira, H. S. Park, D. Campbell and A. C. Neto, Nano Lett. 13 (2013) 2692. [19] N. Myoung, J.-W. Ryu, H. C. Park, S. J. Lee and S. Woo, Phys. Rev. B 100 (2019) 045427. DOI: https://doi.org/10.1021/nl400872q
  17. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321 (2008) 385. DOI: https://doi.org/10.1126/science.1157996