Electron Transport Through Experimentally Controllable Parabolic Bubbles on Graphene Nanoribbons

Mai-Chung Nguyen, Huy-Viet Nguyen
Author affiliations

Authors

  • Mai-Chung Nguyen \(^1\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
    \(^2\)Energy Department, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Huy-Viet Nguyen Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/16763

Abstract

We present a theoretical study of electron transport properties through experimentally controllable graphene nanobubbles [P. Jia et al., Nat. Commun. 10 (2019) 1] employing a tight-binding model and the non-equilibrium Green's function formalism. Sharp conductance peaks are observed at low energy region which signifies the emergence of quasi-bound states caused by pseudomagnetic field in the strained nanobubbles. Analysis based on local density of states reveals the nature of electron transmission at peak energies. Our results also show that the emergence of quasi-bound states and its role in electron transport depend on both strain strength and bubble size: when the strain or size of the bubble increases, more quasi-bound states emerge and resonant tunnelling assisted by these quasi-bound states becomes dominant.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A.Firsov, Science 306 (2004) 666. DOI: https://doi.org/10.1126/science.1102896

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81 (2009) 109. DOI: https://doi.org/10.1103/RevModPhys.81.109

V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103 (2009) 046801. DOI: https://doi.org/10.1103/PhysRevLett.103.046801

C. Si, Z. Sun and F. Liu, Nanoscale 8 (2016) 3207. DOI: https://doi.org/10.1039/C5NR07755A

S. Yang, Y. Chen and C. Jiang, InfoMat 3 (2021) 397. DOI: https://doi.org/10.1002/inf2.12177

F. Guinea, M. Katsnelson and A. Geim, Nat. Phys. 6 (2010) 30. DOI: https://doi.org/10.1038/nphys1420

N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. C. Neto and M. F. Crommie, Science 329 (2010) 544. DOI: https://doi.org/10.1126/science.1191700

P. Jia, W. Chen, J. Qiao, M. Zhang, X. Zheng, Z. Xue, R. Liang, C. Tian, L. He, Z. Di et al., Nat. Commun. 10 (2019) 1 DOI: https://doi.org/10.1038/s41467-019-11038-7

R. Carrillo-Bastos, D. Faria, A. Latge ́, F. Mireles and N. Sandler, Phys. Rev. B 90 (2014) 041411. [10] V.-T. Tran, J. Saint-Martin and P. Dollfus, Phys. Rev. B 102 (2020) 075425. DOI: https://doi.org/10.1103/PhysRevB.90.041411

D. A. Bahamon and V. M. Pereira, Phys. Rev. B 88 (2013) 195416. DOI: https://doi.org/10.1103/PhysRevB.88.195416

V. M. Pereira, A. H. Castro Neto and N. M. R. Peres, Phys. Rev. B 80 (2009) 045401. DOI: https://doi.org/10.1103/PhysRevB.80.045401

M. C. Nguyen, V. H. Nguyen, H.-V. Nguyen and P. Dollfus, Semicond. Sci. Technol 29 (2014) 115024. DOI: https://doi.org/10.1088/0268-1242/29/11/115024

M. C. Nguyen, V. H. Nguyen, H.-V. Nguyen, J. Saint-Martin and P. Dollfus, Physica E 73 (2015) 207. [15] M. Anantram, M. S. Lundstrom and D. E. Nikonov, Proceedings of the IEEE 96 (2008) 1511. DOI: https://doi.org/10.1016/j.physe.2015.05.020

C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electron. 12 (2013) 203. DOI: https://doi.org/10.1007/s10825-013-0458-7

R. Haydock, V. Heine and M. Kelly, J. Phys. C: Solid State Phys. 5 (1972) 2845. DOI: https://doi.org/10.1088/0022-3719/5/20/004

Z. Qi, D. Bahamon, V. M. Pereira, H. S. Park, D. Campbell and A. C. Neto, Nano Lett. 13 (2013) 2692. [19] N. Myoung, J.-W. Ryu, H. C. Park, S. J. Lee and S. Woo, Phys. Rev. B 100 (2019) 045427. DOI: https://doi.org/10.1021/nl400872q

C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321 (2008) 385. DOI: https://doi.org/10.1126/science.1157996

Downloads

Published

27-03-2022

How to Cite

[1]
M.-C. Nguyen and H.-V. Nguyen, Electron Transport Through Experimentally Controllable Parabolic Bubbles on Graphene Nanoribbons, Comm. Phys. 32 (2022) 265. DOI: https://doi.org/10.15625/0868-3166/16763.

Issue

Section

Papers
Received 30-11-2021
Accepted 26-12-2021
Published 27-03-2022