Vol. 32 No. 3 (2022)

Excitonic Susceptibility Function in Semimetal/semiconductor Materials: Formation of the Excitonic Condensate State

Thi Hong Hai Do
Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Hanoi, Vietnam
Thi Hau Nguyen
Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Hanoi, Vietnam

Published 30-05-2022

How to Cite

Do, T. H. H., & Nguyen, T. H. (2022). Excitonic Susceptibility Function in Semimetal/semiconductor Materials: Formation of the Excitonic Condensate State. Communications in Physics, 32(3), 295. https://doi.org/10.15625/0868-3166/16748


The condensate state of excitons in semimetal/semiconductor materials has been considered by analyzing the excitonic susceptibility function in the 2D extended Falicov-Kimbol model including electron-phonon interaction. The excitonic susceptibility in the system has calculated by using the Hartree-Fock approximation. From numerical results, we have set up phase diagrams of
the excitonic condensate state. Phase diagrams confirm that the electron-phonon coupling plays an important role as well as the Coulomb attraction does in establishing the excitonic condensed phase at low temperature. The condensate phase of excitons is found within a limited range of the Coulomb attraction as the electron-phonon coupling is large enough. Depending on the
electron-phonon coupling and the Coulomb attraction, the BCS-BEC crossover of the excitonic condensation phase has also been pointed out.


Download data is not yet available.


Metrics Loading ...


  1. S. A. Moskalenko and D. W. Snoke, Bose-einstein condensation of excitons and biexcitons and coherent nonlinear
  2. optics with excitons, Cambridge Univ. Press, Cambridge, 2000.
  3. N. F. Mott, Philos. Mag. 6 (1961) 287. DOI: https://doi.org/10.1080/14786436108243318
  4. R. Knox, Solid State Physics (F. Seitz and D. Turnbull, eds.), Academic Press, New York, 1963, p. Suppl. 5 p.100.
  5. W. Kohn, Metals and insulators, Many Body Physics (C. de Witt and R. Balian, eds.), Gordon & Breach, New York, 1968.
  6. P. Wachter, B. Bucher and J. Malar, Phys. Rev. B 69 (2004) 094502. DOI: https://doi.org/10.1103/PhysRevB.69.094502
  7. B. Bucher, T. Park, J. D. Thompson and P. Wachter, Thermodynamical signatures of an excitonic insulator, 2008.
  8. P. Wachter, Advances in Materials Physics and Chemistry 8 (2018) 120. DOI: https://doi.org/10.4236/ampc.2018.83009
  9. A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, J. van Wezel and P. Abbamonte, Science 358 (2017) 1314. DOI: https://doi.org/10.1126/science.aam6432
  10. T. I. Larkin, A. N. Yaresko, D. Propper, K. A. Kikoin, Y. F. Lu, T. Takayama, Y.-L. Mathis, A. W. Rost, H. Takagi, B. Keimer and A. V. Boris, PRB 95 (2017) 195144. DOI: https://doi.org/10.1103/PhysRevB.95.195144
  11. Y. Lu, H. Kono1, T. Larkin, A. Rost, T. Takayama, A. Boris, B. Keimer and H. Takagi, Nature Communications 8 (2017) 14408. DOI: https://doi.org/10.1038/ncomms14408
  12. A. Nakano, T. Hasegawa, S. Tamura, N. Katayama, S. Tsutsui and H. Sawa, Phys. Rev. B 98 (2018) 045139. DOI: https://doi.org/10.1103/PhysRevB.98.045139
  13. T. I. Larkin, R. D. Dawson, M. Hoppner, T. Takayama, M. Isobe, Y.-L. Mathis, H. Takagi, B. Keimer, and A. V. ¨Boris, Phys. Rev. B 98 (2018) 125113.
  14. F. X. Bronold and H. Fehske, Phys. Rev. B 74 (2006) 165107. DOI: https://doi.org/10.1103/PhysRevB.74.165107
  15. D. Ihle, M. Pfafferott, E. Burovski, F. X. Bronold and H. Fehske, Phys. Rev. B 78 (2008) 193103. DOI: https://doi.org/10.1103/PhysRevB.78.193103
  16. N. V. Phan, K. W. Becker and H. Fehske, Phys. Rev. B 81 (2010) 205117. DOI: https://doi.org/10.1103/PhysRevB.81.205117
  17. B. Zenker, D. Ihle, F. X. Bronold and H. Fehske, Phys. Rev. B 85 (2012) 121102(R). DOI: https://doi.org/10.1103/PhysRevB.85.121102
  18. Z. Wang, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan and K. F. Mak, 574 (2019) 76. DOI: https://doi.org/10.1038/s41586-019-1591-7
  19. P. Wachter, Solid State Commun. 118 (2001) 645. DOI: https://doi.org/10.1016/S0038-1098(01)00202-2
  20. T.-H.-H. Do, D.-H. Bui and V.-N. Phan, Europhysics Letters 119 (2017) 47003. DOI: https://doi.org/10.1209/0295-5075/119/47003
  21. T.-H.-H. Do, H.-N. Nguyen and V.-N. Phan, Journal of ELECTRONIC MATERIALS 48 (2019) 2677. DOI: https://doi.org/10.1007/s11664-018-06904-x
  22. K. Sugimoto, S. Nishimoto, T. Kaneko and Y. Ohta, Phys. Rev. Lett. 120 (2018) 247602. DOI: https://doi.org/10.1103/PhysRevLett.120.247602
  23. J. Lee, C.-J. Kang, M. J. Eom, J. S. Kim, B. I. Min and H. W. Yeom, Phys. Rev. B 99 (2019) 075408. DOI: https://doi.org/10.1103/PhysRevB.99.075408
  24. T.-H.-H. Do, H.-N. Nguyen, T.-G. Nguyen and V.-N. Phan, Physica Status Solidi B 253 (2016) 1210. DOI: https://doi.org/10.1002/pssb.201552745
  25. Y.-S. Zhang, J. A. N. Bruin, Y. Matsumoto, M. Isobe and H. Takagi, Phys. Rev. B 104 (2021) L121201. DOI: https://doi.org/10.1103/PhysRevB.104.L121201
  26. B. Zenker, D. Ihle, F. X. Bronold and H. Fehske, Phys. Rev. B 81 (2010) 115122. DOI: https://doi.org/10.1103/PhysRevB.81.115122
  27. N. V. Phan, H. Fehske and K. W. Becker, Europhys. Lett. 95 (2011) 17006. DOI: https://doi.org/10.1209/0295-5075/95/17006
  28. T. Kaneko, T. Toriyama, T. Konishi and Y. Ohta, Phys. Rev. B 87 (2013) 035121. DOI: https://doi.org/10.1103/PhysRevB.87.199902
  29. K. Sugimoto, T. Kaneko, and Y. Ohta, Phys. Rev. B. 93 (2016) 041105(R). DOI: https://doi.org/10.1103/PhysRevB.93.041105
  30. P. Wachter and B. Bucher, Physica B 408 (2013) 51. DOI: https://doi.org/10.1016/j.physb.2012.09.018
  31. B. Zenker, H. Fehske, H. Beck, C. Monney and A. R. Bishop, Phys. Rev. B 88 (2013) 075138. DOI: https://doi.org/10.1103/PhysRevB.88.075138