Excitonic Susceptibility Function in Semimetal/semiconductor Materials: Formation of the Excitonic Condensate State
Published 30-05-2022
How to Cite
Abstract
The condensate state of excitons in semimetal/semiconductor materials has been considered by analyzing the excitonic susceptibility function in the 2D extended Falicov-Kimbol model including electron-phonon interaction. The excitonic susceptibility in the system has calculated by using the Hartree-Fock approximation. From numerical results, we have set up phase diagrams of
the excitonic condensate state. Phase diagrams confirm that the electron-phonon coupling plays an important role as well as the Coulomb attraction does in establishing the excitonic condensed phase at low temperature. The condensate phase of excitons is found within a limited range of the Coulomb attraction as the electron-phonon coupling is large enough. Depending on the
electron-phonon coupling and the Coulomb attraction, the BCS-BEC crossover of the excitonic condensation phase has also been pointed out.
Downloads
Metrics
References
- S. A. Moskalenko and D. W. Snoke, Bose-einstein condensation of excitons and biexcitons and coherent nonlinear
- optics with excitons, Cambridge Univ. Press, Cambridge, 2000.
- N. F. Mott, Philos. Mag. 6 (1961) 287. DOI: https://doi.org/10.1080/14786436108243318
- R. Knox, Solid State Physics (F. Seitz and D. Turnbull, eds.), Academic Press, New York, 1963, p. Suppl. 5 p.100.
- W. Kohn, Metals and insulators, Many Body Physics (C. de Witt and R. Balian, eds.), Gordon & Breach, New York, 1968.
- P. Wachter, B. Bucher and J. Malar, Phys. Rev. B 69 (2004) 094502. DOI: https://doi.org/10.1103/PhysRevB.69.094502
- B. Bucher, T. Park, J. D. Thompson and P. Wachter, Thermodynamical signatures of an excitonic insulator, 2008.
- P. Wachter, Advances in Materials Physics and Chemistry 8 (2018) 120. DOI: https://doi.org/10.4236/ampc.2018.83009
- A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, J. van Wezel and P. Abbamonte, Science 358 (2017) 1314. DOI: https://doi.org/10.1126/science.aam6432
- T. I. Larkin, A. N. Yaresko, D. Propper, K. A. Kikoin, Y. F. Lu, T. Takayama, Y.-L. Mathis, A. W. Rost, H. Takagi, B. Keimer and A. V. Boris, PRB 95 (2017) 195144. DOI: https://doi.org/10.1103/PhysRevB.95.195144
- Y. Lu, H. Kono1, T. Larkin, A. Rost, T. Takayama, A. Boris, B. Keimer and H. Takagi, Nature Communications 8 (2017) 14408. DOI: https://doi.org/10.1038/ncomms14408
- A. Nakano, T. Hasegawa, S. Tamura, N. Katayama, S. Tsutsui and H. Sawa, Phys. Rev. B 98 (2018) 045139. DOI: https://doi.org/10.1103/PhysRevB.98.045139
- T. I. Larkin, R. D. Dawson, M. Hoppner, T. Takayama, M. Isobe, Y.-L. Mathis, H. Takagi, B. Keimer, and A. V. ¨Boris, Phys. Rev. B 98 (2018) 125113.
- F. X. Bronold and H. Fehske, Phys. Rev. B 74 (2006) 165107. DOI: https://doi.org/10.1103/PhysRevB.74.165107
- D. Ihle, M. Pfafferott, E. Burovski, F. X. Bronold and H. Fehske, Phys. Rev. B 78 (2008) 193103. DOI: https://doi.org/10.1103/PhysRevB.78.193103
- N. V. Phan, K. W. Becker and H. Fehske, Phys. Rev. B 81 (2010) 205117. DOI: https://doi.org/10.1103/PhysRevB.81.205117
- B. Zenker, D. Ihle, F. X. Bronold and H. Fehske, Phys. Rev. B 85 (2012) 121102(R). DOI: https://doi.org/10.1103/PhysRevB.85.121102
- Z. Wang, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan and K. F. Mak, 574 (2019) 76. DOI: https://doi.org/10.1038/s41586-019-1591-7
- P. Wachter, Solid State Commun. 118 (2001) 645. DOI: https://doi.org/10.1016/S0038-1098(01)00202-2
- T.-H.-H. Do, D.-H. Bui and V.-N. Phan, Europhysics Letters 119 (2017) 47003. DOI: https://doi.org/10.1209/0295-5075/119/47003
- T.-H.-H. Do, H.-N. Nguyen and V.-N. Phan, Journal of ELECTRONIC MATERIALS 48 (2019) 2677. DOI: https://doi.org/10.1007/s11664-018-06904-x
- K. Sugimoto, S. Nishimoto, T. Kaneko and Y. Ohta, Phys. Rev. Lett. 120 (2018) 247602. DOI: https://doi.org/10.1103/PhysRevLett.120.247602
- J. Lee, C.-J. Kang, M. J. Eom, J. S. Kim, B. I. Min and H. W. Yeom, Phys. Rev. B 99 (2019) 075408. DOI: https://doi.org/10.1103/PhysRevB.99.075408
- T.-H.-H. Do, H.-N. Nguyen, T.-G. Nguyen and V.-N. Phan, Physica Status Solidi B 253 (2016) 1210. DOI: https://doi.org/10.1002/pssb.201552745
- Y.-S. Zhang, J. A. N. Bruin, Y. Matsumoto, M. Isobe and H. Takagi, Phys. Rev. B 104 (2021) L121201. DOI: https://doi.org/10.1103/PhysRevB.104.L121201
- B. Zenker, D. Ihle, F. X. Bronold and H. Fehske, Phys. Rev. B 81 (2010) 115122. DOI: https://doi.org/10.1103/PhysRevB.81.115122
- N. V. Phan, H. Fehske and K. W. Becker, Europhys. Lett. 95 (2011) 17006. DOI: https://doi.org/10.1209/0295-5075/95/17006
- T. Kaneko, T. Toriyama, T. Konishi and Y. Ohta, Phys. Rev. B 87 (2013) 035121. DOI: https://doi.org/10.1103/PhysRevB.87.199902
- K. Sugimoto, T. Kaneko, and Y. Ohta, Phys. Rev. B. 93 (2016) 041105(R). DOI: https://doi.org/10.1103/PhysRevB.93.041105
- P. Wachter and B. Bucher, Physica B 408 (2013) 51. DOI: https://doi.org/10.1016/j.physb.2012.09.018
- B. Zenker, H. Fehske, H. Beck, C. Monney and A. R. Bishop, Phys. Rev. B 88 (2013) 075138. DOI: https://doi.org/10.1103/PhysRevB.88.075138