Excitonic Susceptibility Function in Semimetal/semiconductor Materials: Formation of the Excitonic Condensate State

Authors

  • Thi Hong Hai Do Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Hanoi, Vietnam
  • Thi Hau Nguyen Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/16748

Abstract

The condensate state of excitons in semimetal/semiconductor materials has been considered by analyzing the excitonic susceptibility function in the 2D extended Falicov-Kimbol model including electron-phonon interaction. The excitonic susceptibility in the system has calculated by using the Hartree-Fock approximation. From numerical results, we have set up phase diagrams of
the excitonic condensate state. Phase diagrams confirm that the electron-phonon coupling plays an important role as well as the Coulomb attraction does in establishing the excitonic condensed phase at low temperature. The condensate phase of excitons is found within a limited range of the Coulomb attraction as the electron-phonon coupling is large enough. Depending on the
electron-phonon coupling and the Coulomb attraction, the BCS-BEC crossover of the excitonic condensation phase has also been pointed out.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

S. A. Moskalenko and D. W. Snoke, Bose-einstein condensation of excitons and biexcitons and coherent nonlinear

optics with excitons, Cambridge Univ. Press, Cambridge, 2000.

N. F. Mott, Philos. Mag. 6 (1961) 287. DOI: https://doi.org/10.1080/14786436108243318

R. Knox, Solid State Physics (F. Seitz and D. Turnbull, eds.), Academic Press, New York, 1963, p. Suppl. 5 p.100.

W. Kohn, Metals and insulators, Many Body Physics (C. de Witt and R. Balian, eds.), Gordon & Breach, New York, 1968.

P. Wachter, B. Bucher and J. Malar, Phys. Rev. B 69 (2004) 094502. DOI: https://doi.org/10.1103/PhysRevB.69.094502

B. Bucher, T. Park, J. D. Thompson and P. Wachter, Thermodynamical signatures of an excitonic insulator, 2008.

P. Wachter, Advances in Materials Physics and Chemistry 8 (2018) 120. DOI: https://doi.org/10.4236/ampc.2018.83009

A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, J. van Wezel and P. Abbamonte, Science 358 (2017) 1314. DOI: https://doi.org/10.1126/science.aam6432

T. I. Larkin, A. N. Yaresko, D. Propper, K. A. Kikoin, Y. F. Lu, T. Takayama, Y.-L. Mathis, A. W. Rost, H. Takagi, B. Keimer and A. V. Boris, PRB 95 (2017) 195144. DOI: https://doi.org/10.1103/PhysRevB.95.195144

Y. Lu, H. Kono1, T. Larkin, A. Rost, T. Takayama, A. Boris, B. Keimer and H. Takagi, Nature Communications 8 (2017) 14408. DOI: https://doi.org/10.1038/ncomms14408

A. Nakano, T. Hasegawa, S. Tamura, N. Katayama, S. Tsutsui and H. Sawa, Phys. Rev. B 98 (2018) 045139. DOI: https://doi.org/10.1103/PhysRevB.98.045139

T. I. Larkin, R. D. Dawson, M. Hoppner, T. Takayama, M. Isobe, Y.-L. Mathis, H. Takagi, B. Keimer, and A. V. ¨Boris, Phys. Rev. B 98 (2018) 125113.

F. X. Bronold and H. Fehske, Phys. Rev. B 74 (2006) 165107. DOI: https://doi.org/10.1103/PhysRevB.74.165107

D. Ihle, M. Pfafferott, E. Burovski, F. X. Bronold and H. Fehske, Phys. Rev. B 78 (2008) 193103. DOI: https://doi.org/10.1103/PhysRevB.78.193103

N. V. Phan, K. W. Becker and H. Fehske, Phys. Rev. B 81 (2010) 205117. DOI: https://doi.org/10.1103/PhysRevB.81.205117

B. Zenker, D. Ihle, F. X. Bronold and H. Fehske, Phys. Rev. B 85 (2012) 121102(R). DOI: https://doi.org/10.1103/PhysRevB.85.121102

Z. Wang, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan and K. F. Mak, 574 (2019) 76. DOI: https://doi.org/10.1038/s41586-019-1591-7

P. Wachter, Solid State Commun. 118 (2001) 645. DOI: https://doi.org/10.1016/S0038-1098(01)00202-2

T.-H.-H. Do, D.-H. Bui and V.-N. Phan, Europhysics Letters 119 (2017) 47003. DOI: https://doi.org/10.1209/0295-5075/119/47003

T.-H.-H. Do, H.-N. Nguyen and V.-N. Phan, Journal of ELECTRONIC MATERIALS 48 (2019) 2677. DOI: https://doi.org/10.1007/s11664-018-06904-x

K. Sugimoto, S. Nishimoto, T. Kaneko and Y. Ohta, Phys. Rev. Lett. 120 (2018) 247602. DOI: https://doi.org/10.1103/PhysRevLett.120.247602

J. Lee, C.-J. Kang, M. J. Eom, J. S. Kim, B. I. Min and H. W. Yeom, Phys. Rev. B 99 (2019) 075408. DOI: https://doi.org/10.1103/PhysRevB.99.075408

T.-H.-H. Do, H.-N. Nguyen, T.-G. Nguyen and V.-N. Phan, Physica Status Solidi B 253 (2016) 1210. DOI: https://doi.org/10.1002/pssb.201552745

Y.-S. Zhang, J. A. N. Bruin, Y. Matsumoto, M. Isobe and H. Takagi, Phys. Rev. B 104 (2021) L121201. DOI: https://doi.org/10.1103/PhysRevB.104.L121201

B. Zenker, D. Ihle, F. X. Bronold and H. Fehske, Phys. Rev. B 81 (2010) 115122. DOI: https://doi.org/10.1103/PhysRevB.81.115122

N. V. Phan, H. Fehske and K. W. Becker, Europhys. Lett. 95 (2011) 17006. DOI: https://doi.org/10.1209/0295-5075/95/17006

T. Kaneko, T. Toriyama, T. Konishi and Y. Ohta, Phys. Rev. B 87 (2013) 035121. DOI: https://doi.org/10.1103/PhysRevB.87.199902

K. Sugimoto, T. Kaneko, and Y. Ohta, Phys. Rev. B. 93 (2016) 041105(R). DOI: https://doi.org/10.1103/PhysRevB.93.041105

P. Wachter and B. Bucher, Physica B 408 (2013) 51. DOI: https://doi.org/10.1016/j.physb.2012.09.018

B. Zenker, H. Fehske, H. Beck, C. Monney and A. R. Bishop, Phys. Rev. B 88 (2013) 075138. DOI: https://doi.org/10.1103/PhysRevB.88.075138

Downloads

Published

30-05-2022

How to Cite

Do, T. H. H., & Nguyen, T. H. (2022). Excitonic Susceptibility Function in Semimetal/semiconductor Materials: Formation of the Excitonic Condensate State. Communications in Physics, 32(3), 295. https://doi.org/10.15625/0868-3166/16748

Issue

Section

Papers