Higher-order Nonclassicality in Superposition of Three-mode Photon-added Trio Coherent State

Quang Dat Tran, Sy Chuong Ho, Van Hung Dao, Truong Minh Duc
Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/16508

Abstract

In this paper, we study some higher-order nonclassical properties of the superposition of three-mode photon-added trio coherent state such as antibunching, squeezing, and entanglement. The results show that in the case with fixed the higher-order, when increasing the numbers of added photons, the manifestation of the higher-order three-mode sum squeezing is more obvious, but the degrees of higher-order antibunching, and higher-order three-mode entanglement are more reduced. Besides, with fixed the numbers of photon addition to the superposition of three-mode photon-added trio coherent state, the higher-order nonclassical properties as antibunching and entanglement are more pronounced, but three-mode sum squeezing is more decreased when increasing the number of the higher-order.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. Pathak and M. Garcia, Control of higher order antibunching, Appl. Phys. B 84 (2006) 479. DOI: https://doi.org/10.1007/s00340-006-2323-x

J. Aasi et al, Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photonics 7 (2013) 613.

S. L. Braunstein and P. V. Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77 (2005) 513. DOI: https://doi.org/10.1103/RevModPhys.77.513

B. C. Sanders, Superposition of two squeezed vacuum states and interference effects, Phys. Rev. A 39 (1989) 4284. DOI: https://doi.org/10.1103/PhysRevA.39.4284

T. Gantsog and R. Tanas, Phase properties of the two-mode squeezed vacuum states, Phys. Lett. A 152 (1991) 251. DOI: https://doi.org/10.1016/0375-9601(91)90100-M

G. S. Agarwal, Nonclassical statistics of fields in pair coherent states, J. Opt. Soc. Am. B 5 (1988) 1940. DOI: https://doi.org/10.1364/JOSAB.5.001940

X. M. Liu, Even and odd charge coherent states and their non-classical properties, Phys. Lett. A 279 (2001) 123. DOI: https://doi.org/10.1016/S0375-9601(00)00803-3

N. B. An and T. M. Duc, Trio coherent states, J. Opt. B: Quan. Semi. Opt. 4 (2002) 80. DOI: https://doi.org/10.1088/1464-4266/4/1/313

H. Fan and G. Yu, Three-mode squeezed vacuum state in Fock space as an entangled state, Phys. Rev. A 65 (2002) 033829. DOI: https://doi.org/10.1103/PhysRevA.65.033829

G. S. Agarwal and A. Biswas, Quantitative measures of entanglement in pair-coherent states, J. Opt. B: Quantum Semiclass. Opt. 7 (2005) 350. DOI: https://doi.org/10.1088/1464-4266/7/11/006

T. M. Duc, J. Noh and K. Kim, Entanglement criteria in inequality for pair and trio coherent states, Adv. Nat. Sci. 9 (2008) 123.

T. M. Duc, T. Q. Dat, and H. S. Chuong, Quantum entanglement and teleportation in superposition of multiplephoton- added two-mode squeezed vacuum state, Int. J. Mod. Phys. B 34 (2020) 2050223. DOI: https://doi.org/10.1142/S0217979220502239

L. Y. Hu, F. Jia, and Z. M. Zhang, Entanglement and nonclassicality of photon-added two-mode squeezed thermal state, J. Opt. Soc. Am. B 29 (2012) 1456. DOI: https://doi.org/10.1364/JOSAB.29.001456

T. M. Truong, H. T. X. Nguyen and A. B. Nguyen, Sum squeezing, difference squeezing, higher-order antibunching and entanglement of two-mode photon-added displaced squeezed states, Int. J. Theor. Phys. 53 (2013) 899. DOI: https://doi.org/10.1007/s10773-013-1879-6

D. M. Truong, C. S. Ho, and D. Q. Tran, Detecting nonclassicality and non-Gaussianity by theWigner function and quantum teleportation in photon-added-and-subtracted two modes pair coherent state, J. Comput. Electron. (2021). DOI: https://doi.org/10.21203/rs.3.rs-529622/v1

T. M. Duc and T. Q. Dat, Enhancing nonclassical and entanglement properties of trio coherent states by photonaddition, Optik 210 (2020) 164479. DOI: https://doi.org/10.1016/j.ijleo.2020.164479

T. Q. Dat and T. M. Duc, Nonclassical properties of the superposition of three-mode photon-added trio coherent state, Int. J. Theor. Phys. 59 (2020) 3206. DOI: https://doi.org/10.1007/s10773-020-04573-3

Y. Wang, W. S. Bao, H. Z. Bao, C. Zhou, M. S. Jiang and H. W. Li, High-dimensional quantum key distribution with the entangled single-photon-added coherent state, Phys. Lett. A 381 (2017) 1393. DOI: https://doi.org/10.1016/j.physleta.2017.01.058

L. Fan and M. S. Zubairy, Quantum illumination using non-Gaussian states generated by photon subtraction and photon addition, Phys. Rev. A 98 (2018) 012319. DOI: https://doi.org/10.1103/PhysRevA.98.012319

S. Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. A 82 (2010) 053812. DOI: https://doi.org/10.1103/PhysRevA.82.053812

A. Zavatta et al, Quantum-to-classical transition with single-photon-added coherent states of light, Science 306 (2004) 660. DOI: https://doi.org/10.1126/science.1103190

A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58 (1998) 4394. DOI: https://doi.org/10.1103/PhysRevA.58.4394

M. Hillery and V. Buzek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59 (1999) 1829. DOI: https://doi.org/10.1103/PhysRevA.59.1829

N. B. An and J. Kim, Joint remote state preparation, J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 095501. DOI: https://doi.org/10.1088/0953-4075/41/9/095501

T. Q. Dat and T. M. Duc, Higher-order nonclassical and entanglement properties in photon-added trio coherent state, Hue Uni. J. Sci.: Nat. Sci. 129 (2020) 49. DOI: https://doi.org/10.26459/hueuni-jns.v129i1B.5685

C. T. Lee, Many-photon antibunching in generalized pair coherent states, Phys. Rev. A 41 (1990) 1569. DOI: https://doi.org/10.1103/PhysRevA.41.1569

P. Gupta, P. N. Pandey and A Pathak, Higher order antibunching is not a rare phenomenon, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 1137. DOI: https://doi.org/10.1088/0953-4075/39/5/012

N. B. An, Multimode higher-order antibunching and squeezing in trio coherent states, J. Opt. B: Quantum Semiclass. Opt. 4 (2002) 222. DOI: https://doi.org/10.1088/1464-4266/4/3/310

T. M. Duc, D. H. Dinh and T. Q. Dat, Higher-order nonclassical properties of nonlinear charge pair cat states, J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 025402. DOI: https://doi.org/10.1088/1361-6455/ab51f7

A. Kumar and P. S. Gupta, Sum squeezing in four-wave sum frequency generation, Opt. Commun. 136 (1997) 441. DOI: https://doi.org/10.1016/S0030-4018(96)00715-8

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Inseparability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84 (2000) 2722. DOI: https://doi.org/10.1103/PhysRevLett.84.2722

E. Shchukin E and W. Vogel, Publisher’s note: Inseparability criteria for continuous bipartite quantum states [Phys. Rev. Lett. 95, 230502 (2005)], Phys. Rev. Lett. 95 (2005) 230502. DOI: https://doi.org/10.1103/PhysRevLett.95.230502

M. Hillery and M. S. Zubairy, Entanglement conditions for two-mode states, Phys. Rev. Lett. 96 (2006) 050503. DOI: https://doi.org/10.1103/PhysRevLett.96.050503

T. M. Duc and N. T. X. Hoai, Entanglement criterion for bipartite quantum states: applications, Comm. Phys. 20 (2010) 233. DOI: https://doi.org/10.15625/0868-3166/20/3/2275

Downloads

Published

27-03-2022

Issue

Section

Papers
Received 04-09-2021
Accepted 05-10-2021
Published 27-03-2022