Entropy Scaling for Viscosity of Pure Lennard-Jones Fluids and Their Binary Mixtures
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16345Abstract
In this work, entropy scaling approaches for viscosity of pure Lennard-Jones (LJ) fluids and their mixtures have been investigated. To do so, we have employed reliable viscosity database available in literature for the pure LJ fluids, and performed the molecular dynamics simulation to generate viscosity database over a wide range of thermodynamic condition for the LJ mixture fluids. It has shown that for the pure LJ fluid, the entropy scaling approaches using the macroscopic properties for the reduction of viscosity yield noticeably better collapse of data than the one using the zero-density viscosity in the dense fluid region. In addition, we have developed viscosity correlations based on these approaches. It has been obtained that the correlations of macroscopic properties approaches predict the pure LJ fluid viscosity with average absolute deviation of around 4% more coming from the low-density states, whereas it is of around 8.50% more coming from the dense states for the other one. Finally, the viscosity correlations have been applied to the LJ mixtures. Interestingly, the correlations of macroscopic properties approaches are able to provide good estimations for all mixtures studied. However, it deteriorates for the viscosity of dense mixtures when the other employed.
Downloads
Metrics
References
M. J. Assael, J. P. M. Trusler, and T. F. Tsolakis, Thermophysical Properties of Fluids (Imperial College Press, London, 1996). DOI: https://doi.org/10.1142/p007
J. Millat, J. H. Dymond and C. A. Nieto de Castro, Transport Properties of Fluids: Their Correlation, Prediction and Estimation, Cambridge University Press (1996).
B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The properties of gases and liquids, Fifth Edition, McGraw-Hill Education (2001)
Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977) DOI: https://doi.org/10.1103/PhysRevA.15.2545
J. C. Dyre, Perspective: Excess-entropy scaling, J. Chem. Phys. 149, 210901 (2018) DOI: https://doi.org/10.1063/1.5055064
C. Dyre, Hidden scale invariance in condensed matter, J. Phys. Chem. B 118, 10007–10024 (2014). DOI: https://doi.org/10.1021/jp501852b
Y. Rosenfeld, A quasi-universal scaling law for atomic transport in simple fluids, J. Phys.: Condens. Matter 11, 5415–5427 (1999). DOI: https://doi.org/10.1088/0953-8984/11/28/303
L. T. Novak, Self-Diffusion Coefficient and Viscosity in Fluids, Int. J. Chem. React. Eng., 9, A63 (2011) DOI: https://doi.org/10.1515/1542-6580.2640
G. Galliero, C. Boned, J. Fernández, Scaling of the viscosity of the Lennard-Jones chain fluid model, argon, and some normal alkanes, J. Chem. Phys. 134, 064505 (2011) DOI: https://doi.org/10.1063/1.3553262
I. H. Bell, R. Messerly, M. Thol, L. Costigliola, and J. C. Dyre, Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid, J. Phys. Chem. B, 123, 29, 6345–6363 (2019) DOI: https://doi.org/10.1021/acs.jpcb.9b05808
L. T. Novak, Fluid Viscosity-Residual Entropy Correlation, Int. J. Chem. React. Eng., 9, A107 (2011) DOI: https://doi.org/10.2202/1542-6580.2839
L. T. Novak, Predicting Fluid Viscosity of Nonassociating Molecules, Ind. Eng. Chem. Res., 54, 5830−5835 (2015). DOI: https://doi.org/10.1021/acs.iecr.5b01526
I. H. Bell, Entropy Scaling of Viscosity-I: A Case Study of Propane, J. Chem. Eng. Data, 65, 6, 3203–3215 (2020) DOI: https://doi.org/10.1021/acs.jced.0c00209
I. H. Bell, Entropy Scaling of Viscosity-II: Predictive Scheme for Normal Alkanes, J. Chem. Eng. Data, 65, 11, 5606–5616 (2020) DOI: https://doi.org/10.1021/acs.jced.0c00749
O. Lötgering-Lin, M. Fischer, M. Hopp, J. Gross, Pure Substance and Mixture Viscosities Based on Entropy Scaling and an Analytic Equation of State, Ind. Eng. Chem. Res. 2018, 57, 4095−4114. DOI: https://doi.org/10.1021/acs.iecr.7b04871
M. B. M. Taib and J. P. M. Trusler, Residual entropy model for predicting the viscosities of dense fluid mixtures, J. Chem. Phys. 152, 164104 (2020) DOI: https://doi.org/10.1063/5.0002242
I. H. Bell, J. C. Dyre, T. S. Ingebrigtsen, Excess-entropy scaling in supercooled binary mixtures, Nat. Commun. 11, 4300 (2020) DOI: https://doi.org/10.1038/s41467-020-17948-1
X. Yang, X. Xiao, E. F. May, and I. H. Bell, Entropy Scaling of Viscosity-III: Application to Refrigerants and Their Mixtures, J. Chem. Eng. Data 2021, 66, 3, 1385–1398 DOI: https://doi.org/10.1021/acs.jced.0c01009
M.P. Allen and D.J. Tildesley, Computer simulations of Liquids, Oxford University Press, New York, (1987).
J. O. Hirschefelder, C. F. Curtiss and R. B. Bird, Molecular theory of gases and liquids. Wiley, New York, (1954).
D. N. Theodorou, Progress and Outlook in Monte Carlo Simulations, Ind. Eng. Chem. Res., 49, 7, 3047–3058 (2010). DOI: https://doi.org/10.1021/ie9019006
A. Hospital, J. R. Goñi, M. Orozco, and J. L. Gelpí, Molecular dynamics simulations: advances and applications, Adv. Appl. Bioinform Chem., 8, 37-47 (2015). DOI: https://doi.org/10.2147/AABC.S70333
J. Kolafa and I. Nezbeda, The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state, Fluid Phase Equilib. 100, 1 (1994). DOI: https://doi.org/10.1016/0378-3812(94)80001-4
M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, J. Vrabec, Equation of State for the Lennard-Jones Fluid, J. Phys. Chem. Ref. Data 45, 023101 (2016). DOI: https://doi.org/10.1063/1.4945000
Lennard-Jones, J. E. On the Determination of Molecular Fields, Proc. R. Soc. Lond. 1924, 106, 441. DOI: https://doi.org/10.1098/rspa.1924.0081
B. Widom, Some Topics in the Theory of Fluids. J. Chem. Phys., 39 (1963) 2808. DOI: https://doi.org/10.1063/1.1734110
B. Widom, Potential-Distribution Theory and the Statistical Mechanics of Fluids. J. Phys. Chem., 86 (1982) 869. DOI: https://doi.org/10.1021/j100395a005
P. Bordat, F. Müller-Plathe, F. The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics. J. Chem Phys. 2002, 116, 3362. DOI: https://doi.org/10.1063/1.1436124
F. Müller-Plathe, F. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids. Phys. Rev. E, 59, 4894 (2003). DOI: https://doi.org/10.1103/PhysRevE.59.4894
L. Verlet, Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 159, 98 (1967). DOI: https://doi.org/10.1103/PhysRev.159.98
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Di Nola, J. R. Haak, Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 81, 3684 (1984). DOI: https://doi.org/10.1063/1.448118
T. W. Leland, J. S. Rowlinson, and G. A. Sather, Statistical thermodynamics of mixtures of molecules of different sizes. Trans. Faraday Sot., 64, 1447-1460 (1968). DOI: https://doi.org/10.1039/tf9686401447
J. A. Mansoori and T.W. Leland, Statistical thermodynamics of mixtures. A new version for the theory of conformal solution. J. Chem. Sot. Faraday Trans. II, 68, 320-344 (1972) DOI: https://doi.org/10.1039/f29726800320
J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons (1997).
K. Meier, A. Laesecke, and S. Kabelac, Transport coefficients of the Lennard-Jones model fluid. I. Viscosity. J. Chem. Phys. 121, 3671 (2004). DOI: https://doi.org/10.1063/1.1770695
G. Galliero, C. Boned, and A. Baylaucq, Molecular Dynamics Study of the Lennard-Jones Fluid Viscosity: Application to Real Fluids, Ind. Eng. Chem. Res. 44, 6963 (2005) DOI: https://doi.org/10.1021/ie050154t
S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1981)
P. D. Neufeld, A. R. Janzen, and R. A. Aziz, Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard‐Jones (12–6) Potential, J. Chem. Phys. 57, 1100 (1972) DOI: https://doi.org/10.1063/1.1678363
I. H. Bell, G. Galliero, S. Delage-Santacreu, L. Costigliola, An entropy scaling demarcation of gas- and liquid-like fluid behaviors, J. Chem. Phys. 152, 191102 (2020). DOI: https://doi.org/10.1063/1.5143854
C. R. A. Wilke, Viscosity Equation for Gas Mixtures. J. Chem. Phys., 18, 517−519 (1950). DOI: https://doi.org/10.1063/1.1747673
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 28-10-2021
Published 27-03-2022