Published 15-01-2022
How to Cite
Phuc, L. H., Hien, N. Q., Nguyen-Truong, H. T., & Le, H. M. (2022). Excitation Spectra of Cubic Perovskite Titanates. Communications in Physics, 32(1), 49. https://doi.org/10.15625/0868-3166/16343
Abstract
We calculate excitation spectra of cubic perovskites ATiO3 (A = Ca, Sr, Ba, Pb). The calculations are performed within the time-dependent density functional theory, including local field effects. The theoretical calculations show that the perovskites have a plasmon mode at around 12 eV, which is not observed in experiments.
Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
References
- J. Hao, W. Si, X. X. Xi, R. Guo, A. S. Bhalla and L. E. Cross, Dielectric properties of pulsed-laser-deposited calcium titanate thin films, Appl. Phys. Lett. 76 (2000) 3100. DOI: https://doi.org/10.1063/1.126536
- E. Chernova, O. Pacherova, D. Chvostova, A. Dejneka, T. Kocourek, M. Jelinek and M. Tyunina, Strain-controlled optical absorption in epitaxial ferroelectric BaTiO3 films, Appl. Phys. Lett. 106 (2015) 192903. DOI: https://doi.org/10.1063/1.4921083
- A. Dejneka, D. Chvostova, O. Pacherova, T. Kocourek, M. Jelinek and M. Tyunina, Optical effects induced by epitaxial tension in lead titanate, Appl. Phys. Lett. 112 (2018) 031111. DOI: https://doi.org/10.1063/1.5013640
- M. Tyunina, N. Nepomniashchaia, V. Vetokhina and A. Dejneka, Optics of epitaxial strained strontium titanate films, Appl. Phys. Lett. 117 (2020) 082901. DOI: https://doi.org/10.1063/5.0021461
- M. Cardona, Optical Properties and Band Structure of SrTiO3 and BaTiO3 Phys. Rev. 140 (1965) A651. DOI: https://doi.org/10.1103/PhysRev.140.A651
- D. B¨auerle, W. Braun, V. Saile, G. Spr¨ussel and E. E. Koch, Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO3, Zeitschrift f¨ur Phys. B Condens. Matter 29 (1978) 179. DOI: https://doi.org/10.1007/BF01321179
- K. Ueda, H. Yanagi, R. Noshiro, H. Hosono and H. Kawazoe, Vacuum ultraviolet reflectance and electron energy loss spectra of CaTiO3 J. Phys. Condens. Matter 10 (1998) 3669. DOI: https://doi.org/10.1088/0953-8984/10/16/018
- S. Kohiki, M. Arai, H. Yoshikawa, S. Fukushima, M. Oku and Y. Waseda, Energy-loss structure in core-level photoemission satellites of SrTiO3, SrTiO3:La, and SrTiO3:Nb, Phys. Rev. B 62 (2000) 7964. DOI: https://doi.org/10.1103/PhysRevB.62.7964
- S. Saha, T. P. Sinha and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62 (2000) 8828. DOI: https://doi.org/10.1103/PhysRevB.62.8828
- Y.-x. Wang, W.-l. Zhong, C.-l. Wang and P.-l. Zhang, First principles study on the optical properties of cubic CaTiO3, Phys. Lett. A 291 (2001) 338. DOI: https://doi.org/10.1016/S0375-9601(01)00735-6
- M. Arai, S. Kohiki, H. Yoshikawa, S. Fukushima, Y. Waseda and M. Oku, Photoelectron energy-loss functions of SrTiO3, BaTiO3, and TiO2: theory and experiment, Phys. Rev. B 65 (2002) 085101.
- M.-Q. Cai, Z. Yin and M.-S. Zhang, First-principles study of optical properties of barium titanate, Appl. Phys. Lett. 83 (2003) 2805. DOI: https://doi.org/10.1063/1.1616631
- G. Gupta, T. Nautiyal and S. Auluck, Optical properties of the compounds BaTiO3 and SrTiO3 Phys. Rev. B 69 (2004) 052101.
- S.-D. Guo and B.-G. Liu, Electronic structures and optical dielectric functions of room temperature phases of SrTiO3 and BaTiO3, J. Appl. Phys. 110 (2011) 073525. DOI: https://doi.org/10.1063/1.3647315
- S. Sanna, C. Thierfelder, S. Wippermann, T. P. Sinha and W. G. Schmidt, Barium titanate ground- and excitedstate properties from first-principles calculations, Phys. Rev. B 83 (2011) 054112. DOI: https://doi.org/10.1103/PhysRevB.83.054112
- S. M. Hosseini, T. Movlarooy and A. Kompany, First-principles study of the optical properties of PbTiO3, Eur. Phys. J. B - Condens. Matter Complex Syst. 46 (2005) 463. DOI: https://doi.org/10.1140/epjb/e2005-00275-3
- H. T. Nguyen-Truong, Low-energy electron inelastic mean free path in materials, Appl. Phys. Lett. 108 (2016) 172901. DOI: https://doi.org/10.1063/1.4948248
- H. T. Nguyen-Truong, B. Da, L. Yang, Z. Ding, H. Yoshikawa and S. Tanuma, Low-energy electron inelastic mean free path for monolayer graphene, Appl. Phys. Lett. 117 (2020) 033103. DOI: https://doi.org/10.1063/5.0016284
- A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner and C. Draxl, Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory, J. Phys. Condens. Matter 26 (2014) 363202. DOI: https://doi.org/10.1088/0953-8984/26/36/363202
- S. Tinte, M. G. Stachiotti, C. O. Rodriguez, D. L. Novikov and N. E. Christensen, Applications of the generalized gradient approximation to ferroelectric perovskites, Phys. Rev. B 58 (1998) 11959. DOI: https://doi.org/10.1103/PhysRevB.58.11959
- B. J. Kennedy, C. J. Howard and B. C. Chakoumakos, Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study, J. Phys. Condens. Matter 11 (1999) 1479. DOI: https://doi.org/10.1088/0953-8984/11/6/012
- Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata and M. Sakata, Evidence for Pb-O Covalency in Tetragonal PbTiO3, Phys. Rev. Lett. 87 (2001) 217601. DOI: https://doi.org/10.1103/PhysRevLett.87.217601
- M. Gatti, I. V. Tokatly and A. Rubio, Sodium: a charge-transfer insulator at high pressures, Phys. Rev. Lett. 104 (2010) 216404. DOI: https://doi.org/10.1103/PhysRevLett.104.216404
- N. Vast, L. Reining, V. Olevano, P. Schattschneider and B. Jouffrey, Local Field Effects in the Electron Energy Loss Spectra of Rutile TiO2, Phys. Rev. Lett. 88 (2002) 037601. DOI: https://doi.org/10.1103/PhysRevLett.88.037601