Vol. 32 No. 3 (2022)

Insights into Interaction of CO\(_2\) with N and B-doped Graphenes

Nguyen Thi Xuan Huynh
Qui Nhon University Ho Chi Minh City University of Technology
Viorel Chihaia
Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy
Do Ngoc Son
Ho Chi Minh City University of Technology

Published 27-03-2022


  • 2D materials,
  • gas storage,
  • interface,
  • computation,
  • toxic gases

How to Cite

Xuan Huynh, N. T., Chihaia, V., & Son, D. N. (2022). Insights into Interaction of CO\(_2\) with N and B-doped Graphenes. Communications in Physics, 32(3), 243. https://doi.org/10.15625/0868-3166/16124


Graphene is a promising candidate for CO2 capture and storage. Doping graphene with other elements is an effective way to modify its CO2 storage ability. The literature has shown that the N and B doping could change the adsorption strength of CO2 on the graphene substrate. However, there is no research available to elucidate the adsorption sites and the physical properties underlying the interaction of CO2 with the N and B doped systems. Therefore, this paper is devoted to clarifying the current topic using the self-consistent van der Waals density functional theory calculations. The results showed that the N and B doping increases and decreases the adsorption energy of CO2, respectively. The reason is that there are more peaks of the electronic density of states of CO2 participating in the interaction with the N p orbital than with the B p orbital.


Download data is not yet available.


Metrics Loading ...


  1. T. T. T. Huong, P. N. Thanh, N. T. X. Huynh and D. N. Son, Metal organic frameworks: state-of-the-art material for gas capture and storage, VNU Journal of Science.: Mathematics and Physics 32 (2016) 67. DOI: https://doi.org/10.25073/2588-1124/vnumap.4053
  2. C. Pettinari and A. Tombesi, Metalorganic frameworks for carbon dioxide capture, MRS Energy Sustain. 7 (2020) 35. DOI: https://doi.org/10.1557/mre.2020.30
  3. K. Sumida, D. L. Rogow, J. A. Manson, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long, Carbon dioxide capture in metalorganic frameworks, Chem. Rev. 112 (2012) 724. DOI: https://doi.org/10.1021/cr2003272
  4. S. Kumar, R. Srivastava and J. Koh, Utilization of zeolites as CO2 capturing agents: Advances and future perspectives, J. CO2 Util. 41 (2020) 101251. DOI: https://doi.org/10.1016/j.jcou.2020.101251
  5. S. Avevedo, L. Giraldo and J. C Moreno-Pirajan, Adsorption of CO2 on activated carbons prepared by chemical activation with cupric nitrate, ACS Omega 5 (2020) 10423. DOI: https://doi.org/10.1021/acsomega.0c00342
  6. J. M. Ngoy, N. Wagner, L. Riboldi and O. Bolland, A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant, Energy Procedia 63 (2014) 2230. DOI: https://doi.org/10.1016/j.egypro.2014.11.242
  7. B. Szczniak, J. Choma and M. Jaroniec, Gas adsorption properties of graphene-based materials, Adv. Colloid Interface Sci. 243 (2017) 46. DOI: https://doi.org/10.1016/j.cis.2017.03.007
  8. A. K. Mishra and S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets, AIP Adv. 1 (2011) 032152. DOI: https://doi.org/10.1063/1.3638178
  9. K. J. Lee and S. J. Kim, Theoretical investigation of CO2 adsorption on graphene, Bull. Korean Chem. Soc. 34 (2013) 3022. DOI: https://doi.org/10.5012/bkcs.2013.34.10.3022
  10. N. T. Cuong and N. M. Tien, First-principles studies of CO2 and NH3 gas molecules adsorbed on graphene nanoribbons, VNU J. Sci.: Math. Phys. 32 (2016) 15.
  11. S. Agnoli and M. Favaro, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A 4 (2016) 5002. DOI: https://doi.org/10.1039/C5TA10599D
  12. Y. G. Zhou, X. T. Zu, F. Gao, J. L. Nie and H. Y. Xiao, Adsorption of hydrogen on boron-doped graphene: A first-principles prediction, J. Appl. Phys. 105 (2009) 014309. DOI: https://doi.org/10.1063/1.3056380
  13. N. A. Aqtash and I. Vasiliev, Ab initio study of boron- and nitrogen-doped graphene and carbon nanotubes functionalized with carboxyl groups, J. Phys. Chem. C 115 (2011) 18500. DOI: https://doi.org/10.1021/jp206196k
  14. K. C. Kemp, V. Chandra, M. Saleh and K. S. Kim, Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material, Nanotechnology 24 (2013) 235703. DOI: https://doi.org/10.1088/0957-4484/24/23/235703
  15. P. Tamilarasan and S. Ramaprabhu, Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene, J. Appl. Phys. 117 (2015) 144301. DOI: https://doi.org/10.1063/1.4917205
  16. M. R. Fiorentin, R. Gaspari, M. Quaglio, G. Massaglia and G. Saracco, Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study, Phys. Rev. B 97 (2018) 155428. DOI: https://doi.org/10.1103/PhysRevB.97.155428
  17. J. Dai, J. Yuan and P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study, Appl. Phys. Lett. 95 (2009) 232105. DOI: https://doi.org/10.1063/1.3272008
  18. M. Dion, H. Rydberg, E. Schroder, D. C. Langreth and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92 (2004) 246401. DOI: https://doi.org/10.1103/PhysRevLett.92.246401
  19. T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard and D. C. Langreth, Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond, Phys. Rev. B 76 (2007) 125112. DOI: https://doi.org/10.1103/PhysRevB.76.125112
  20. D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Kck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schrder and T. Thonhauser, A density functional for sparse matter, J. Phys.: Condens. Matter. 21 (2009) 084203. DOI: https://doi.org/10.1088/0953-8984/21/8/084203
  21. G. Kresse and J. Furthmller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169. DOI: https://doi.org/10.1103/PhysRevB.54.11169
  22. G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15. DOI: https://doi.org/10.1016/0927-0256(96)00008-0
  23. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev, B 46 (1992) 6671. DOI: https://doi.org/10.1103/PhysRevB.46.6671
  24. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
  25. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made Simple [Phys. Rev. Lett. 77 (1996) 3865], Phys. Rev. Lett. 78 (1997) 1396. DOI: https://doi.org/10.1103/PhysRevLett.78.1396
  26. P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953. DOI: https://doi.org/10.1103/PhysRevB.50.17953
  27. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758. DOI: https://doi.org/10.1103/PhysRevB.59.1758
  28. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188
  29. T. T. Pham, T. N. Pham, V. Chihaia, Q. A. Vu, T. T. Trinh, T. T. Pham, L. V. Thang and D. N. Son, How do the doping concentrations of N and B in graphene modify the water adsorption?, RSC Adv. 11 (2021) 19560. DOI: https://doi.org/10.1039/D1RA01506K
  30. D. N. Son, T. T. T. Huong and V. Chihaia, Simultaneous adsorption of SO2 and CO2 in an Ni(bdc)(ted)0:5 metalorganic framework, RSC Adv. 8 (2018) 38648. DOI: https://doi.org/10.1039/C8RA07919F