Insights into Interaction of CO\(_2\) with N and B-doped Graphenes

Authors

DOI:

https://doi.org/10.15625/0868-3166/16124

Keywords:

2D materials, gas storage, interface, computation, toxic gases

Abstract

Graphene is a promising candidate for CO2 capture and storage. Doping graphene with other elements is an effective way to modify its CO2 storage ability. The literature has shown that the N and B doping could change the adsorption strength of CO2 on the graphene substrate. However, there is no research available to elucidate the adsorption sites and the physical properties underlying the interaction of CO2 with the N and B doped systems. Therefore, this paper is devoted to clarifying the current topic using the self-consistent van der Waals density functional theory calculations. The results showed that the N and B doping increases and decreases the adsorption energy of CO2, respectively. The reason is that there are more peaks of the electronic density of states of CO2 participating in the interaction with the N p orbital than with the B p orbital.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T. T. T. Huong, P. N. Thanh, N. T. X. Huynh and D. N. Son, Metal organic frameworks: state-of-the-art material for gas capture and storage, VNU Journal of Science.: Mathematics and Physics 32 (2016) 67. DOI: https://doi.org/10.25073/2588-1124/vnumap.4053

C. Pettinari and A. Tombesi, Metalorganic frameworks for carbon dioxide capture, MRS Energy Sustain. 7 (2020) 35. DOI: https://doi.org/10.1557/mre.2020.30

K. Sumida, D. L. Rogow, J. A. Manson, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long, Carbon dioxide capture in metalorganic frameworks, Chem. Rev. 112 (2012) 724. DOI: https://doi.org/10.1021/cr2003272

S. Kumar, R. Srivastava and J. Koh, Utilization of zeolites as CO2 capturing agents: Advances and future perspectives, J. CO2 Util. 41 (2020) 101251. DOI: https://doi.org/10.1016/j.jcou.2020.101251

S. Avevedo, L. Giraldo and J. C Moreno-Pirajan, Adsorption of CO2 on activated carbons prepared by chemical activation with cupric nitrate, ACS Omega 5 (2020) 10423. DOI: https://doi.org/10.1021/acsomega.0c00342

J. M. Ngoy, N. Wagner, L. Riboldi and O. Bolland, A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant, Energy Procedia 63 (2014) 2230. DOI: https://doi.org/10.1016/j.egypro.2014.11.242

B. Szczniak, J. Choma and M. Jaroniec, Gas adsorption properties of graphene-based materials, Adv. Colloid Interface Sci. 243 (2017) 46. DOI: https://doi.org/10.1016/j.cis.2017.03.007

A. K. Mishra and S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets, AIP Adv. 1 (2011) 032152. DOI: https://doi.org/10.1063/1.3638178

K. J. Lee and S. J. Kim, Theoretical investigation of CO2 adsorption on graphene, Bull. Korean Chem. Soc. 34 (2013) 3022. DOI: https://doi.org/10.5012/bkcs.2013.34.10.3022

N. T. Cuong and N. M. Tien, First-principles studies of CO2 and NH3 gas molecules adsorbed on graphene nanoribbons, VNU J. Sci.: Math. Phys. 32 (2016) 15.

S. Agnoli and M. Favaro, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A 4 (2016) 5002. DOI: https://doi.org/10.1039/C5TA10599D

Y. G. Zhou, X. T. Zu, F. Gao, J. L. Nie and H. Y. Xiao, Adsorption of hydrogen on boron-doped graphene: A first-principles prediction, J. Appl. Phys. 105 (2009) 014309. DOI: https://doi.org/10.1063/1.3056380

N. A. Aqtash and I. Vasiliev, Ab initio study of boron- and nitrogen-doped graphene and carbon nanotubes functionalized with carboxyl groups, J. Phys. Chem. C 115 (2011) 18500. DOI: https://doi.org/10.1021/jp206196k

K. C. Kemp, V. Chandra, M. Saleh and K. S. Kim, Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material, Nanotechnology 24 (2013) 235703. DOI: https://doi.org/10.1088/0957-4484/24/23/235703

P. Tamilarasan and S. Ramaprabhu, Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene, J. Appl. Phys. 117 (2015) 144301. DOI: https://doi.org/10.1063/1.4917205

M. R. Fiorentin, R. Gaspari, M. Quaglio, G. Massaglia and G. Saracco, Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study, Phys. Rev. B 97 (2018) 155428. DOI: https://doi.org/10.1103/PhysRevB.97.155428

J. Dai, J. Yuan and P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study, Appl. Phys. Lett. 95 (2009) 232105. DOI: https://doi.org/10.1063/1.3272008

M. Dion, H. Rydberg, E. Schroder, D. C. Langreth and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92 (2004) 246401. DOI: https://doi.org/10.1103/PhysRevLett.92.246401

T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard and D. C. Langreth, Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond, Phys. Rev. B 76 (2007) 125112. DOI: https://doi.org/10.1103/PhysRevB.76.125112

D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Kck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schrder and T. Thonhauser, A density functional for sparse matter, J. Phys.: Condens. Matter. 21 (2009) 084203. DOI: https://doi.org/10.1088/0953-8984/21/8/084203

G. Kresse and J. Furthmller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169. DOI: https://doi.org/10.1103/PhysRevB.54.11169

G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15. DOI: https://doi.org/10.1016/0927-0256(96)00008-0

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev, B 46 (1992) 6671. DOI: https://doi.org/10.1103/PhysRevB.46.6671

J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made Simple [Phys. Rev. Lett. 77 (1996) 3865], Phys. Rev. Lett. 78 (1997) 1396. DOI: https://doi.org/10.1103/PhysRevLett.78.1396

P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953. DOI: https://doi.org/10.1103/PhysRevB.50.17953

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758. DOI: https://doi.org/10.1103/PhysRevB.59.1758

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

T. T. Pham, T. N. Pham, V. Chihaia, Q. A. Vu, T. T. Trinh, T. T. Pham, L. V. Thang and D. N. Son, How do the doping concentrations of N and B in graphene modify the water adsorption?, RSC Adv. 11 (2021) 19560. DOI: https://doi.org/10.1039/D1RA01506K

D. N. Son, T. T. T. Huong and V. Chihaia, Simultaneous adsorption of SO2 and CO2 in an Ni(bdc)(ted)0:5 metalorganic framework, RSC Adv. 8 (2018) 38648. DOI: https://doi.org/10.1039/C8RA07919F

Downloads

Published

27-03-2022

How to Cite

Xuan Huynh, N. T., Chihaia, V., & Son, D. N. (2022). Insights into Interaction of CO\(_2\) with N and B-doped Graphenes. Communications in Physics, 32(3), 243. https://doi.org/10.15625/0868-3166/16124

Issue

Section

Papers