Fabrication of Silver Nanostructures in the Form of Particles, Dendrites and Flowers on Silicon for Use in SERS Substrates

Cao Dao Tran, Ngan Luong Truc Quynh, Tuan Anh Cao, Minh Kieu Ngoc
Author affiliations


  • Cao Dao Tran (1) Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam. (2) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
  • Ngan Luong Truc Quynh (1) Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam. (2) Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
  • Tuan Anh Cao Tantrao University, Trung Mon, Yen Son, Tuyen Quang, Vietnam
  • Minh Kieu Ngoc Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam




SERS, silver, silicon, nanoparticles, nanodendrites, nanoflowers


Surface Enhanced Raman Scattering (SERS) is a technique that is increasingly being used to detect trace amounts of various types of molecules, especially organic and biological molecules. The SERS effect is available mainly due to the SERS substrate - a noble metal surface that is rough at the nano level or a set of noble metal nanoparticles in a certain arrangement. Such a SERS substrate acts as an analyte Raman signal amplifier and can provide amplification up to millions of times and even more. The amplification coefficient of the SERS substrate is determined mainly by the number of ‘hot spots’ it contains as well as the ‘hotness’ of these spots. In turn, a ‘hot spot’ is a certain space around the tips or a nanogap between particles, where the local electromagnetic field is intensely enhanced, while the ‘hotness’ is determined by the sharpness of the tips (the sharper the hotter) and tightness of the gaps (the narrower the hotter). This report presents an overview of the research results of fabricating a type of SERS substrate with a high enhancement factor, which is the SERS substrate made from silver nanostructures coated on the silicon surface. With the aim of increasing the number of ‘hot spots’ and their quality, as well as ensuring uniformity and reproducibility of the SERS substrate, silver nanostructures have been fabricated in various forms, such as nanoparticles, nanodendrites and nanoflowers. In addition, the report also mentions the use of the above silver nanostructures as SERS substrates to detect trace amounts of some pesticides and other toxic agents such as paraquat, pyridaben, thiram, cyanide...


Download data is not yet available.


Metrics Loading ...


C. Raman and K. Krishnan, Polarisation of scattered light-quanta, Nature 122 (1928) 169. DOI: https://doi.org/10.1038/122169a0

G. S. Bumbrah and R. M. Sharma, Raman spectroscopy–basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egypt. J. Forensic Sci. 6 (2016) 209. DOI: https://doi.org/10.1016/j.ejfs.2015.06.001

M. Fleischmann, P. J. Hendra and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163. DOI: https://doi.org/10.1016/0009-2614(74)85388-1

D. L. Jeanmaire and R. P. Van Duyne, Surface raman spectroelectrochemistry: Part i. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84 (1977) 1. DOI: https://doi.org/10.1016/S0022-0728(77)80224-6

M. G. Albrecht and J. A. Creighton, Anomalously intense raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99 (1977) 5215. DOI: https://doi.org/10.1021/ja00457a071

A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni et al., Unique gold nanoparticle aggregates as a highly active surface-enhanced raman scattering substrate, J. Phys. Chem. B 108 (2004) 19191. DOI: https://doi.org/10.1021/jp048430p

J. Jiang, Q. Shen, P. Xue, H. Qi, Y. Wu, Y. Teng et al., A highly sensitive and stable sers sensor for malachite green detection based on ag nanoparticles in situ generated on 3d mos2 nanoflowers, Chemistry Select 5 (2020) 354. DOI: https://doi.org/10.1002/slct.201903924

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei et al., Multiplexed imaging of surface enhanced raman scattering nanotags in living mice using noninvasive raman spectroscopy, Proc. Natl. Acad. Sci. USA 106 (2009) 13511. DOI: https://doi.org/10.1073/pnas.0813327106

A. K. Sarychev, A. Ivanov, A. Lagarkov and G. Barbillon, Light concentration by metal-dielectric micro-resonators for sers sensing, Materials 12 (2018) 103. DOI: https://doi.org/10.3390/ma12010103

C. Carraro, R. Maboudian and L. Magagnin, Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes, Surface Science Reports 62 (2007) 499. DOI: https://doi.org/10.1016/j.surfrep.2007.08.002

T. C. Dao and T. Q. N. Luong, Fabrication of uniform arrays of silver nanoparticles on silicon by electrodeposition in ethanol solution and their use in sers detection of difenoconazole pesticide, RSC Adv. 10 (2020) 40940. DOI: https://doi.org/10.1039/D0RA08060H

M. Hankus, D. Stratis-Cullum and P. Pellegrino, Surface enhanced raman scattering (sers)-based next this article is licensed under a creative commons attribution 3.0 unported licence. generation commercially available substrate: physical characterization and biological application, Biosensing Nanomedicine IV 8099 (2011) 80990N. DOI: https://doi.org/10.1117/12.893842

M. S. Schmidt, J. H¨ubner and A. Boisen, Large area fabrication of leaning silicon nanopillars for surface enhanced raman spectroscopy, Adv. Mater. 24 (2012) OP11. DOI: https://doi.org/10.1002/adma.201103496

Y. Liu, Y. Zhang, M. Tardivel, M. Lequeux, X. Chen, W. Liu et al., Evaluation of the reliability of six commercial sers substrates, Plasmonics 15 (2020) 743. DOI: https://doi.org/10.1007/s11468-019-01084-8

L. T. Q. Ngan, K. N. Minh, D. T. Cao, C. T. Anh and L. Van Vu, Synthesis of silver nanodendrites on silicon and its application for the trace detection of pyridaben pesticide using surface-enhanced raman spectroscopy, Journal of Electronic Materials 46 (2017) 3770. DOI: https://doi.org/10.1007/s11664-017-5284-4

E. M. Ghodrat, P. Kazem, H. Shapour, Y. Parichehr and N. Golamreza, The effects of pyridaben pesticide on gonadotropic, gonadal hormonal alternations, oxidative and nitrosative stresses in balb/c mice strain, Comp. Clin. Pathol. 23 (2014) 297. DOI: https://doi.org/10.1007/s00580-012-1609-0

G. E. Manas, S. Hasanzadeh and K. Parivar, The effects of pyridaben pesticide on the histomorphometric, hormonal alternations and reproductive functions of balb/c mice, Iran. J. Basic. Med. Sci. 16 (2013) 1055.

T. C. Dao, T. Q. N. Luong, T. A. Cao and N. M. Kieu, Detection of a sudan dye at low concentrations by surface-enhanced raman spectroscopy using silver nanoparticles, Comm. in Phys. 29 (2019) 521. DOI: https://doi.org/10.15625/0868-3166/29/4/14178

T. C. Dao, N. M. Kieu, T. Q. N. Luong, T. A. Cao, N. H. Nguyen and V. V. Le, Modification of the SERS spectrum of cyanide traces due to complex formation between cyanide and silver, Adv. Nat. Sci: Nanosci. Nanotechnol. 9 (2018) 025006. DOI: https://doi.org/10.1088/2043-6254/aabef8

T. C. Dao, T. Q. N. Luong, T. A. Cao, N. M. Kieu and V. V. Le, Application of silver nanodendrites deposited on silicon in SERS technique for the trace analysis of paraquat, Adv. Nat. Sci: Nanosci. Nanotechnol. 7 (2016) 015007. DOI: https://doi.org/10.1088/2043-6262/7/1/015007

T. A. Witten and L. M. Sander, Diffusion-limited aggregation, Phys. Rev. B 27 (1983) 5686. DOI: https://doi.org/10.1103/PhysRevB.27.5686

R. L. Penn and J. F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science 281 (1998) 969. DOI: https://doi.org/10.1126/science.281.5379.969

L. Hong, Q. Li, H. Lin and Y. Li, Synthesis of flower-like silver nanoarchitectures at room temperature, Mater. Res. .Bull. 44 (2009) 1201. DOI: https://doi.org/10.1016/j.materresbull.2009.01.017

J. Yang, B. Cao, H. Li and B. Liu, Investigation of the catalysis and sers properties of flower-like and hierarchical silver microcrystals, J. Nanopart. Res. 16 (2014) 1. DOI: https://doi.org/10.1007/s11051-014-2651-4

Y.-x. Wu, P. Liang, Q.-m. Dong, Y. Bai, Z. Yu, J. Huang et al., Design of a silver nanoparticle for sensitive surface enhanced raman spectroscopy detection of carmine dye, Food Chem. 237 (2017) 974. DOI: https://doi.org/10.1016/j.foodchem.2017.06.057

H. Zheng, D. Ni, Z. Yu, P. Liang and H. Chen, Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced raman spectroscopy, Sens. Actuator B Chem. 231 (2016) 423. DOI: https://doi.org/10.1016/j.snb.2016.03.045

K. N. Minh, C. T. Anh, L. T. Q. Ngan, L. VAN VU and D. T. Cao, Synthesis of flower-like silver nanostructures on silicon and their application in surface-enhanced raman scattering, Comm. in Phys. 26 (2016) 241. DOI: https://doi.org/10.15625/0868-3166/26/3/9023

T. C. Dao, T. Q. N. Luong, T. A. Cao and N. M. Kieu, High-sensitive sers detection of thiram with silver nanodendrites substrate, Adv. Nat. Sci.: Nanosci. Nanotechnol. 10 (2019) 025012. DOI: https://doi.org/10.1088/2043-6254/ab2245




How to Cite

C. Dao Tran, N. Luong Truc Quynh, T. A. Cao and M. Kieu Ngoc, Fabrication of Silver Nanostructures in the Form of Particles, Dendrites and Flowers on Silicon for Use in SERS Substrates, Comm. Phys. 32 (2022) 201. DOI: https://doi.org/10.15625/0868-3166/16113.



Received 04-06-2021
Accepted 16-12-2021
Published 27-03-2022

Most read articles by the same author(s)