Vol. 32 No. 1 (2022)
Papers

Characteristics of Dye-doped Silica Nanoparticles- Based Random Lasers in the Air and Water

Duong Van Ta
Le Quy Don Technical University
Tam Trong Nguyen
Vietnam National University
Hanh Hong Mai
Vietnam National University
Thau Xuan Nguyen
Le Quy Don Technical University
Lien Thi Ha Nghiem
Vietnam Academy of Science and Technology

Published 30-09-2021

Keywords

  • random laser,
  • microlaser,
  • dye-doped silica nanoparticles,
  • film

How to Cite

Ta, D. V., Nguyen, T. T., Mai, H. H., Nguyen, T. X., & Nghiem, L. T. H. (2021). Characteristics of Dye-doped Silica Nanoparticles- Based Random Lasers in the Air and Water. Communications in Physics, 32(1), 1. https://doi.org/10.15625/0868-3166/16091

Abstract

Random lasers based on dye-doped silica nanoparticles are attracted for biomedical applications due to their biocompatibility and high brightness. Several laser structures including silica powder and film have been reported. However, the dependence of lasing characteristics including lasing threshold and emission wavelength on the laser size and working environment have not been explored. Here, we demonstrate and compare the lasing characteristics of dye-doped silica random lasers in air and water. These lasers present in thin structures, the so-called microslices, with a thickness of 1 µm and various dimensions from 30 to 300 µm. It is found that the lasing threshold (Ith) decreases with increasing laser size such as  for sample in the air and  for sample in water, where A the sample surface area. For a similar size, the lasing threshold of the sample in water is about 3-8 times higher than that of the sample in the air. In addition, the lasing peak wavelength exhibits a red-shift with increasing laser size. In the air, a shift of 8 nm is recorded when the sample surface area increases from 21×103 to 169×103 µm2. Furthermore, for a similar size, the lasing wavelength of the sample in the air is also red-shifted (13 nm in average ) compared with that of the sample in water. Our finding provides useful information for the use of silica-based random lasers in bioimaging and biosensing applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. H. E. T¨ureci, L. Ge, S. Rotter, A. D. Stone, Strong interactions in multimode random lasers, Science 320 (2008) 643. DOI: https://doi.org/10.1126/science.1155311
  2. Y. Wang, Z. Duan, Z. Qui, P. Zhang, J. Wu, A. Dingke and T. Xiang, Random lasing in human tissues embedded with organic dyes for cancer diagnosis, Sci. Rep. 7 (2017) 8385. DOI: https://doi.org/10.1038/s41598-017-08625-3
  3. W. Z. W. Ismail, G. Liu, K. Zhang, E. M. Goldys and J. M. Dawes, Dopamine sensing and measurement using threshold and spectral measurements in random lasers, Opt. Express 24 (2016) A85. DOI: https://doi.org/10.1364/OE.24.000A85
  4. B. Redding, M. A. Choma, H. Cao, Hui, Dopamine sensing and measurement using threshold and spectral measurements in random lasers, Nat. Photonics 6 (2012) 355. DOI: https://doi.org/10.1038/nphoton.2012.90
  5. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, Random lasing in bone tissue, Opt. Lett. 35 (2010) 1425. DOI: https://doi.org/10.1364/OL.35.001425
  6. R. C. Polson and Z. V. Vardeny, Random lasing in human tissues, Appl. Phys. Lett. 85 (2004) 1289. DOI: https://doi.org/10.1063/1.1782259
  7. S. Caixeiro, M. Gaio, B. Marelli, F. G. Omenetto and R. Sapienza, Silk-based biocompatible random lasing, Adv. Opt. Mater 4 (2016) 998. DOI: https://doi.org/10.1002/adom.201600185
  8. V. W. Chen, N. Sobeshchuk, C. Lafargue, E. S. Mansfield, J. Yom, L. R. Johnstone, J. M. Hales, S. Bittner, S. Charpignon, D. Ulbricht, J. Lautru, I. Denisyuk, J. Zyss, J.W. Perry and M. Lebental, Three-dimensional organic microlasers with low lasing thresholds fabricated by multiphoton and UV lithography, Opt. Express 22 (2014) 12316. DOI: https://doi.org/10.1364/OE.22.012316
  9. T. B. Messaoud, D. Wright, E. Toussaere, S. X. Dou and J. Zyss, Laser threshold of polymer cylindrical microresonators, Synth. Met. 138 (2003) 347 DOI: https://doi.org/10.1016/S0379-6779(03)00112-7
  10. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H.Wang, R. P. H. Chang, Random laser action in semiconductor powder, Phys. Rev. Lett. 82 (1999) 2278 DOI: https://doi.org/10.1103/PhysRevLett.82.2278
  11. Z. Shang, M. Yang and L. Deng, Low–threshold and high intensity random lasing enhanced by MnCl2, Materials 9 (2016) 725 DOI: https://doi.org/10.3390/ma9090725
  12. P. Liu, S. Singh, Y. Guo, J. J. Wang, H. Xu, C. Silien, N. Liu and K. M. Ryan, Assembling ordered nanorod superstructures and their application as microcavity lasers, Sci. Rep. 7 (2017) 43884 DOI: https://doi.org/10.1038/srep43884
  13. S. W. Chang, W. C. Liao, Y. M. Liao, H. I. Lin, H. Y. Lin, W. J. Lin, S. Y. Lin, P. Perumal, G. Haider, C. T. Tai, K. C. Shen, C. H. Chang, Y. F. Huang, T. Y. Lin and Y. F. Chen, A white random laser, Sci. Rep. 8 (2018) 2720 DOI: https://doi.org/10.1038/s41598-018-21228-w
  14. F. Lahoz, I. R. Mart´ın, M. Urgell´es, J. Marrero-Alonso, R. Mar´ın, C. J. Saavedra, A. Boto and M. D´ıaz, Random laser in biological tissues impregnated with a fluorescent anticancer drug, Laser Phys. Lett. 12 (2015) 045805 DOI: https://doi.org/10.1088/1612-2011/12/4/045805
  15. C. S.Wang, T. Y. Chang, T. Y. Lin and Y. F. Chen, Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors, Sci. Rep. 4 (2014) 6736. DOI: https://doi.org/10.1038/srep06736
  16. M. V. Dos Santos, C. T. Dominguez, J. V. Schiavon, H. S. Barud, L. S. A. De Melo, S. J. L. Ribeiro, A. S. L. Gomes and C. B. De Ara´ujo, Random laser action from flexible biocellulose-based device, J. Appl. Phys. 115 (2014) 083108 DOI: https://doi.org/10.1063/1.4866686
  17. H. N. Tran, T. H. L. Nghiem, T. T. Duong Vu, M. T. Pham, T. Van Nguyen, T. T. Tran, V. H. Chu, K. T. Tong, T. T. Tran, T. T. Xuan Le, J. C. Brochon, T. Q. Nguyen, M. N. Hoang, C. N. Duong, T. T. Nguyen, A. T. Hoang and P. H. Nguyen, Dye-doped silica-based nanoparticles for bioapplications, Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013) 043001 DOI: https://doi.org/10.1088/2043-6262/4/4/043001
  18. S. Garc´ıa-Revilla, J. Fern´andez, M. A. Illarramendi, B. Garc´ıa-Ramiro, R. Balda, H. Cui, M. Zayat and D. Levy, Ultrafast random laser emission in a dye-doped silica gel powder, Opt. Express 16 (2008) 12251 DOI: https://doi.org/10.1364/OE.16.012251
  19. B. Garc´ıa-Ramiro, M. A. Illarramendi, S. Garc´ıa-Revilla, R. Balda, D. Levy, M. Zayat and J. Fern´andez, Lasing threshold of one- and two-photon-pumped dye-doped silica powder, Appl. Phys. B Lasers Opt. 117 (2014) 1135 DOI: https://doi.org/10.1007/s00340-014-5936-5
  20. V. D. Ta, T. T. Nguyen, T. H. L. Nghiem, H. N. Tran, A. T. Le, N. T. Dao, P. D. Duong and H. H. Mai, Silica based biocompatible random lasers implantable in the skin, Opt. Commun. 475 (2020) 126207 DOI: https://doi.org/10.1016/j.optcom.2020.126207
  21. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389 (1997) 827 DOI: https://doi.org/10.1038/39827
  22. T. V. Nguyen, T. D. Nguyen, N. V. Pham, T.-A. Nguyen and D. V. Ta, Characteristics of Dye-doped Silica Nanoparticles- Based Random Lasers in the Air and Water, Opt. Lett. 46 (2021) 2517
  23. Y. Bian, X. Shi, M. Hu and Z. Wang, A ring-shaped random laser in momentum space, Nanoscale 12 (2020) 3166 DOI: https://doi.org/10.1039/C9NR07034F
  24. R. Sapienza, Determining random lasing action, Nat. Rev. Phys. 1 (2019) 690 DOI: https://doi.org/10.1038/s42254-019-0113-8
  25. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu and R. P. H. Chang, Investigation of random lasers with resonant feedback, Phys. Rev. A - At. Mol. Opt. Phys. 64 (2001) 8 DOI: https://doi.org/10.1103/PhysRevA.64.063808
  26. V. D. Ta, D. Saxena, S. Caixeiro and R. Sapienza, Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing, Nanoscale 12 (2020) 12357 DOI: https://doi.org/10.1039/D0NR02484H
  27. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, A. L. Kanibolotsky, P. J. Skabara, E. Gu, N. Laurand and M. D. Dawson, Modification of emission wavelength in organic random lasers based on photonic glass, Org. Electron. 13 (2012) 1129 DOI: https://doi.org/10.1016/j.orgel.2012.03.014
  28. S. K. Y. Tang, R. Derda, Q. Quan, M. Lonˇcar and G. M. Whitesides, Continuously tunable microdroplet-laser in a microfluidic channel, Opt. Express 19 (2011) 2204 DOI: https://doi.org/10.1364/OE.19.002204
  29. H. H. Mai, T. T. Nguyen, K. M. Giang, X. T. Do, T. Nguyen, H. C. Hoang and D. V. Ta, Chicken albumen-based whispering gallery mode microlasers, Soft Matter 16 (2020) 9069 DOI: https://doi.org/10.1039/D0SM01091J