Vol. 32 No. 1 (2022)

Vibrational Dynamics of Pd-Ni-P Bulk Metallic Glasses: a Local Pseudopotential Study

Punit H Suthar
Department of physics, C.U.Shah Science College, Ahmedabad
P N Gajjar
2Department of Physics, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India

Published 15-01-2022


  • Vibrational dynamics,
  • bulk metallic glass,
  • elastic properties,
  • pseudopotential,
  • local field correction functions

How to Cite

Suthar, P. H., & Gajjar, P. N. (2022). Vibrational Dynamics of Pd-Ni-P Bulk Metallic Glasses: a Local Pseudopotential Study. Communications in Physics, 32(1), 67. https://doi.org/10.15625/0868-3166/16055


In the present paper, Phonon modes and elastic constant of three different concentrations of PdxNi1-xP (Pd64Ni16P20, Pd40Ni40P20 and Pd16Ni64P20) bulk metallic glass are calculated using (1) Hubbard-Beeby (HB) and (2) Takeno-Goda (TG) approach along with our well established local model potential. The Hartree (H), Farid et al (F) and Sarkar et al (S) local field correlation functions (LFCF) are employed to examine the effect of the screening function on the collective dynamics of Pd-Ni-P bulk metallic glasses. Results are also reported for phonon dispersion curve, propagation elastic wave and elastic properties viz: bulk modulus BT, modulus of rigidity G, Poisson’s ratio ξ, Young’s modulus Y, Debye temperature ƟD. However, the calculated elastic constants results agree well with other theoretical and available experimental data.


Download data is not yet available.


Metrics Loading ...


  1. S. Hosokawa, M. Inui, Y Kajihara, T Ichitsubo, K Matsuda, H Kato, A Chiba, K Kimura, K Kamimura, S Tsutsui, H Uchiyama and A. Q. R. Baron, Phonon excitations in Pd40Ni40P20 bulk metallic glass by inelastic x-ray scattering, Mater. Sci. Forum 879 (2017) 767 DOI: https://doi.org/10.4028/www.scientific.net/MSF.879.767
  2. H. S. Chen, Glass temperature, formation and stability of Fe, Co, Ni, Pd and Pt based glasses, Mater. Sci. Eng. 23 (1976) 151 DOI: https://doi.org/10.1016/0025-5416(76)90185-3
  3. H. S. Chen, J. T. Krause and E. Colemen, Elastic constants, hardness and their implications to flow properties of metallic glasses, J Non-Cryst Solids 18 (1975) 157 DOI: https://doi.org/10.1016/0022-3093(75)90018-6
  4. A.J. Drehman, A.L. Greer and D. Turnbull, Bulk formation of a metallic glass: Pd40Ni40P20, Appl. Phys. Lett. 41 (1982) 716 DOI: https://doi.org/10.1063/1.93645
  5. H. W. Kui, A. L. Greer and D. Turnbull, Formation of bulk metallic glass by fluxing, Appl. Phys. Lett. 45 (1984) 615 DOI: https://doi.org/10.1063/1.95330
  6. W. H. Wang, C. Dong and C. H. Shek, Bulk metallic glasses, Mater. Sci. Engineer. R 44 (2004) 45 DOI: https://doi.org/10.1016/j.mser.2004.03.001
  7. W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57 (2012) 487 DOI: https://doi.org/10.1016/j.pmatsci.2011.07.001
  8. P. Chauthari, Theoretical Investigation of technologically important bulk metallic glasses and alkaline sulphides pseudopotentials and density functional theory, Ph. D. Thesis, Sardar Patel University, India (2017)
  9. E. F. Lambson, W. A. Lambson, J. E. Macdonald, M. R. J. Gibbs, G. A. Saunders and D. Turnbull, Elastic behavior and vibrational anharmonicity of a bulk Pd40Ni40P20 metallic glass, Phys Rev B 33 (1986) 2380
  10. J. -B. Suck, Collective excitations in disordered systems, Int. J. of Mod. Phys. B 7 (1993) 3003 DOI: https://doi.org/10.1142/S0217979293003139
  11. P. C. Agarwal, Phonon dispersion in Zr–Ti–Cu–Ni–Be bulk metallic glasses, Physica B 381 (2006) 239-245 DOI: https://doi.org/10.1016/j.physb.2006.01.522
  12. A. M. Vora, Pseudopotential in the study of phonon dynamics of Pd-based metallic glasses, J. of Non Crystalline solid 352 (2006) 3217 DOI: https://doi.org/10.1016/j.jnoncrysol.2006.05.016
  13. A. M. Vora and R. C. Malan, Vibrational dynamics of Pd39Ni10Cu30P21 bulk metallic glass, Materials Today: Proceedings 12 (2019) 549 DOI: https://doi.org/10.1016/j.matpr.2019.03.097
  14. J. Hubbard and J. L. Beeby, Collective motion in liquids, J. of Physics. C: Solid Stat. Phys. 2 (1969) 556 DOI: https://doi.org/10.1088/0022-3719/2/3/318
  15. S. Takeno and M. Goda, A Theory of phonons in amorphous solids and its implications to collective motion in simple liquids, Prog. Theor. Phys. 45 (2) (1971) 331 DOI: https://doi.org/10.1143/PTP.45.331
  16. S. Takeno and M. Goda, A theory of phonon-like excitations in non-crystalline solids and liquids, Prog. Theor. Phys. 47 (3) (1972) 790 DOI: https://doi.org/10.1143/PTP.47.790
  17. A. R. Jani, H. K. Patel and P. N. Gajjar, Susceptibility of some simple metals by local pseudopotentials, Physics. State Solidi (b) K 105 (1992) 165 DOI: https://doi.org/10.1002/pssb.2221690240
  18. P. H. Suthar, P. N. Gajjar, B. Y. Thakore and A.R. Jani, Study of phonon modes and elastic properties of Sc36Al24Co20Y20 and Gd36Al24Co20Y20 rare-earth bulk metallic glasses, J. Phys.: Conference Series 423 (2013) 012030-1-9 DOI: https://doi.org/10.1088/1742-6596/423/1/012030
  19. W. A. Harrison, Elementary electronic structure, Elementary Electronic Structure, 1999, World Scientific, Singapore DOI: https://doi.org/10.1142/4121
  20. B. Farid, V. Heine, G. Engel and I. Robertson, Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas, Phys.Rev. B. 48 (16) (1993) 11602 DOI: https://doi.org/10.1103/PhysRevB.48.11602
  21. A. Sarkar, D. Sen, S. Haldar and D. Roy, Static local field factor for dielectric screening function of electron gas at metallic and lower densities, Mod. Phys. Letter 12 (1998) 639 DOI: https://doi.org/10.1142/S0217984998000755
  22. J. M. Wills, W. A. Harrison, Interionic interactions in transition metals, Phys. Rev. B 28 (1983) 4363 DOI: https://doi.org/10.1103/PhysRevB.28.4363