Vol. 32 No. 1 (2022)

Light Scattering by Noble Metallic Nanoparticles for Performance of Compound Solar Cells Enhancement

Lam Dinh Nguyen
University of Engineering and Technology

Published 15-01-2022


  • Au nanoparticle,
  • Ag nanoparticle,
  • light scattering,
  • surface roughness

How to Cite

Nguyen, L. D. (2022). Light Scattering by Noble Metallic Nanoparticles for Performance of Compound Solar Cells Enhancement. Communications in Physics, 32(1), 21. https://doi.org/10.15625/0868-3166/15991


Light scattering by noble metallic nanoparticles are of interest for a variety of applications due to the large electromagnetic field enhancement that occurs in the vicinity of the metal surface, and the dependence of the resonance photon energy on the nanoparticle size, shape, local dielectric environment, and material. Here, the influences of electromagnetic scattering by Au and Ag nanoparticles placed atop compound solar cells on optical absorption and photocurrent generation were investigated based on the variation in the noble nanoparticle densities. The results indicated that the short-circuit current and power conversion efficiency were strongly affected by the density and material of the noble nanoparticles. The great improvement of 28% in power conversion efficiency can be obtained with Au nanoparticle density of 2\(\times\)108 cm-2. This improvement can be attributed to light scattering, light trapping, and surface roughness by noble nanoparticles. Furthermore, Au nanoparticles showed more efficient in solar cell power conversion efficiency improvement than Ag nanoparticles did although density of Au nanoparticle was lower than that of Ag nanoparticles.


Download data is not yet available.


Metrics Loading ...


  1. G. Womack, K. Isbilir, F. Lisco, G. Durand, A. Taylor and J. M. Walls, The performance and durability of single-layer sol-gel anti-reflection coatings applied to solar module cover glass, Surf. Coat. Technol. 358 (2019) 76. DOI: https://doi.org/10.1016/j.surfcoat.2018.11.030
  2. W. Qarony, M.I. Hossain, A. Salleo, D. Knipp, Y. H. Tsang, Rough versus planar interfaces: How to maximize the short circuit current of perovskite single and tandem solar cells, Mater. Tod. Ener. 11 (2019) 106. DOI: https://doi.org/10.1016/j.mtener.2018.10.001
  3. D. Eisenhauer, C. T. Trinh, D. Amkreutz and C. Becker, Light management in crystalline silicon thin-film solar cells with imprint-textured glass superstrate, Sol. Ener. Mater. Sol. Cell. 200 (2019) 109928. DOI: https://doi.org/10.1016/j.solmat.2019.109928
  4. S. Morawiec, M. J. Mendes, F. Priolo and I. Crupi, Plasmonic nanostructures for light trapping in thin-film solar cells, Mater. Sci. Semi. Proc. 92 (2019) 10. DOI: https://doi.org/10.1016/j.mssp.2018.04.035
  5. G. Singh and S. S. Verma, Design and analysis of thin film GaAs solar cells using silver nanoparticle plasmons, Phot. Nanostruc. Fund. Appl. 37 (2019) 100731. DOI: https://doi.org/10.1016/j.photonics.2019.100731
  6. G. Singh, J. S. Sekhon and S. S. Verma, Enhanced photocurrent in thin-film GaAs solar cells with embedded Al nanoparticles, Ener. Sour. Part A: Recov. Util. Env. Eff. 42 (2020) 815. DOI: https://doi.org/10.1080/15567036.2019.1587082
  7. W. J. Ho, G. Y. Chen and J. J. Liu, Enhancing Photovoltaic performance of plasmonic silicon solar cells with ITO nanoparticles dispersed in SiO2 anti-reflective layer, Mater. 12 (2019) 1614. DOI: https://doi.org/10.3390/ma12101614
  8. K. Nakayama, K. Tanabe and H. A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett. 93 (2008) 121904. DOI: https://doi.org/10.1063/1.2988288
  9. H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 205. DOI: https://doi.org/10.1038/nmat2629
  10. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York (1998). DOI: https://doi.org/10.1002/9783527618156
  11. K. R. Catchpole and A. Polman, Plasmonic solar cells, Opt. Exp. 16 (2008) 21793. DOI: https://doi.org/10.1364/OE.16.021793
  12. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu and E. T. Yu, Nanoparticle-induced light scattering for improved performance of quantum-well solar cells, Appl. Phys. Lett. 93 (2008) 091107. DOI: https://doi.org/10.1063/1.2973988
  13. C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting and E. T. Yu, Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles, J. Appl. Phys. 106 (2009) 056101. DOI: https://doi.org/10.1063/1.3213366
  14. M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto and G. Bruno, Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance, Sol. Ener. Mat. Sol. Cell. 93 (2009) 1749. DOI: https://doi.org/10.1016/j.solmat.2009.06.002
  15. S. Pillai, K. R. Catchpole, T. Trupke and M. A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys. 101 (2007) 093105. DOI: https://doi.org/10.1063/1.2734885
  16. D. M. Schaadt, B. Feng and E. T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett. 86 (2005) 063106. DOI: https://doi.org/10.1063/1.1855423
  17. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York (1981).
  18. S. H. Lim, W. Mar, P. Matheu, D. Derkacs and E. T. Yu, Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles, J. Appl. Phys. 101, (2007) 104309. DOI: https://doi.org/10.1063/1.2733649
  19. T. H. Chang, P. H. Wu, S. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen and Y. K. Su, Efficiency enhancement in GaAs solar cells using self-assembled microspheres, Opt. Exp. 17 (2009) 6519 DOI: https://doi.org/10.1364/OE.17.006519