Normed Division Algebras Application to the Monopole Physics
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/15905Keywords:
Levi-Civita transformation, harmonic oscillator, MICZ-Kepler problem, duality, Dirac, Yang, and SO(8) monopoles, nine-dimensional space, octonionAbstract
We review some normed division algebras (R, C, H, O) applications to the monopole physics and MICZ-Kepler problems. More specifically, we will briefly review some results in applying the normed division algebras to interpret the existence of Dirac, Yang, and SO(8) monopoles. These monopoles also appear during the examination of the duality between isotropic harmonic oscillators and the MICZ-Kepler problems. We also revisit some of our newest results in the nine-dimensional MICZ-Kepler problem using the generalized Hurwitz transformation.
Downloads
Metrics
References
P. A. M. Dirac,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences133(1931)60.
H. Hopf,Mathematische Annalen104(1931) 637. DOI: https://doi.org/10.1007/BF01457962
H. Hopf,Fundam. Math.25(1935) 427. DOI: https://doi.org/10.4064/fm-25-1-427-440
J. Baez,Bulletin of the American Mathematical Society39(2002) 145. DOI: https://doi.org/10.1090/S0273-0979-01-00934-X
T. T. Wu and C. N. Yang,Phys. Rev. D12(1975) 3845. DOI: https://doi.org/10.1103/PhysRevB.12.3845
C. N. Yang,J. Math. Phys.19(1978) 320. DOI: https://doi.org/10.1111/j.1528-1157.1978.tb04495.x
C. N. Yang,Physics Today67(2014) 45. DOI: https://doi.org/10.1063/PT.3.2585
B. Grossman, T. W. Kephart and J. D. Stasheff,Commun. Math. Phys.96(1984) 431. DOI: https://doi.org/10.1007/BF01212529
S.-C. Zhang and J. Hu,Science294(2001) 823. DOI: https://doi.org/10.1126/science.294.5543.823
B. A. Bernevig, J. Hu, N. Toumbas and S.-C. Zhang,Phys. Rev. Lett.91(2003) 236803. DOI: https://doi.org/10.1103/PhysRevLett.91.236803
V.-H. Le, T.-S. Nguyen and N.-H. Phan,J. Phys. A Math. Theor.42(2009) 175204. DOI: https://doi.org/10.1088/1751-8113/42/17/175204
V.-H. Le and T.-S. Nguyen,J. Math. Phys.52(2011) 032105. DOI: https://doi.org/10.1063/1.3567422
R. B. Laughlin,Phys. Rev. Lett.50(1983) 1395. DOI: https://doi.org/10.1103/PhysRevLett.50.1395
C. Furey,Physics Letters B785(2018) 84 . DOI: https://doi.org/10.1016/j.physletb.2018.08.032
L. Boyle and S. Farnsworth,New Journal of Physics22(2020) 073023. DOI: https://doi.org/10.1088/1367-2630/ab9709
D. Bergmann and Y. Frishman,J. Math. Phys.6(1965) 1855. DOI: https://doi.org/10.1063/1.1704733
D. Zwanziger,Physical Review176(1968) 1480. DOI: https://doi.org/10.1103/PhysRev.176.1480
H. V. McIntosh and A. Cisneros,J. Math. Phys.11(1970) 896. DOI: https://doi.org/10.1063/1.1665227
L. G. Mardoyan, A. N. Sissakian and V. M. Ter-Antonyan,8D oscillator as a hidden SU(2) - monopole, 1997.
I. Bars and J. L. Rosner,Journal of Physics A: Mathematical and Theoretical53(2020) 234001. DOI: https://doi.org/10.1088/1751-8121/ab87ba
T. Levi-Civita, Acta Mathematica 30 (1906) 305. DOI: https://doi.org/10.1007/BF02418577
P. Kustaanheimo and E. Stiefel, Journal f¨ur die reine und angewandte Mathematik (Crelles Journal) 218 (1965) 204. DOI: https://doi.org/10.1515/crll.1965.218.204
M. Kibler, A. Ronveaux and T. N´egadi, J. Math. Phys. 27 (1986) 1541. DOI: https://doi.org/10.1063/1.527064
V.-H. Le and L. I. Komarov, Phy. Lett. A 177 (1993) 121. DOI: https://doi.org/10.1016/0375-9601(93)90520-A
A. Hurwitz, Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse (1898) 309.
S. Okubo, Introduction to octonion and other non-associative algebras in physics, vol. 2, Cambridge University Press, 1995. DOI: https://doi.org/10.1017/CBO9780511524479
J. A. Nieto and L. N. Alejo-Armenta, International Journal of Modern Physics A 16 (2001) 4207. DOI: https://doi.org/10.1142/S0217751X01005213
D. W. Lyons, Mathematics Magazine 76 (2003) 87. DOI: https://doi.org/10.1080/0025570X.2003.11953158
K. Hasebe, Symmetry, Integrability and Geometry: Methods and Applications 6 (2010) 071.
V.-H. Le, T. J. Viloria and A.-T. Le, J. Phys. A Math. Theor. 24 (1991) 3021. DOI: https://doi.org/10.1088/0305-4470/24/13/017
L. Davtyan, L. Mardoyan, G. Pogosyan, A. Sissakian and V. Ter-Antonyan, J. Phys. A Math. Theor. 20 (1987) 6121. DOI: https://doi.org/10.1088/0305-4470/20/17/044
D. Lambert and M. Kibler, J. Phys. A Math. Theor. 21 (1988) 307. DOI: https://doi.org/10.1088/0305-4470/21/2/012
A. Trautman, International Journal of Theoretical Physics 16 (1977) 561. DOI: https://doi.org/10.1007/BF01811088
L. H. Ryder, J. Phys. A Math. Theor. 13 (1980) 437. DOI: https://doi.org/10.1088/0305-4470/13/2/012
F. Cooper, A. Khare and U. P. Sukhatme, Supersymmetry in quantum mechanics, World Scientific, 2001. DOI: https://doi.org/10.1142/4687
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic press, 2014.
M. M. Nieto, Am. J. Phys. 47 (1979) 1067. DOI: https://doi.org/10.1119/1.11976
I. Mladenov and V. Tsanov, Journal of Geometry and Physics 2 (1985) 17 . DOI: https://doi.org/10.1016/0393-0440(85)90016-6
V. Aquilanti, S. Cavalli and C. Coletti, Chem. Phys. 214 (1997) 1 . DOI: https://doi.org/10.1016/S0301-0104(96)00310-2
S. M. Al-Jaber, International Journal of Theoretical Physics 37 (1998) 1289. DOI: https://doi.org/10.1023/A:1026679921970
G. Meng, J. Math. Phys. 48 (2007) 032105. DOI: https://doi.org/10.1063/1.2712420
G. Meng, Phys. At. Nucl. 71 (2008) 946. DOI: https://doi.org/10.1134/S1063778808050256
G. Meng, J. London Math. Soc. 81 (2010) 663. DOI: https://doi.org/10.1112/jlms/jdq019
G. Meng and R. Zhang, J. Math. Phys. 52 (2011) 042106. DOI: https://doi.org/10.1063/1.3574886
H. Kleinert, Group dynamics of the hydrogen atom, Gordon and Breach, New York, 1968.
C. Pedder, J. Sonner and D. Tong, Journal of High Energy Physics 2008 (2008) 065. DOI: https://doi.org/10.1088/1126-6708/2008/03/065
A. Cisneros and H. V. McIntosh, J. Math. Phys. 10 (1969) 277. DOI: https://doi.org/10.1063/1.1664843
D.-N. Le, N.-T. D. Hoang and V.-H. Le, J. Math. Phys. 58 (2017) 042102. DOI: https://doi.org/10.1063/1.4979618
D.-N. Le, N.-T. D. Hoang and V.-H. Le, J. Math. Phys. 59 (2018) 032101. DOI: https://doi.org/10.1063/1.4997532
L. D. Nam, P. A. Luan, L. P. Su and P. N. Hung, HCMUE Journal of Science: Natural Sciences and Technology 16 (2019) 103. DOI: https://doi.org/10.54607/hcmue.js.16.3.2456(2019)
J. Moser, Communications on Pure and Applied Mathematics 23 (1970) 609. DOI: https://doi.org/10.1002/cpa.3160230406
M. Boiteux, Physica 65 (1973) 381. DOI: https://doi.org/10.1016/0031-8914(73)90353-4
M. Boiteux, J. Math. Phys. 23 (1982) 1311. DOI: https://doi.org/10.1063/1.525515
A. O. Barut, C. K. E. Schneider and R. Wilson, J. Math. Phys. 20 (1979) 2244. DOI: https://doi.org/10.1063/1.524005
T. Iwai and Y. Uwano, J. Math. Phys. 27 (1986) 1523. DOI: https://doi.org/10.1063/1.527112
A. O. Barut and G. L. Bornzin, J. Math. Phys. 12 (1971) 841. DOI: https://doi.org/10.1063/1.1665653
S. Bellucci, S. Krivonos and V. Ohanyan, Physical Review D 76 (2007) 105023. DOI: https://doi.org/10.1103/PhysRevD.76.105023
I. Marquette, J. Math. Phys. 51 (2010) 102105. DOI: https://doi.org/10.1063/1.3496900
L. G. Mardoyan, Phys. At. Nucl. 68 (2005) 1746. DOI: https://doi.org/10.1134/1.2121925
L. Mardoyan, A. Nersessian and A. Yeranyan, Phy. Lett. A 366 (2007) 30. DOI: https://doi.org/10.1016/j.physleta.2007.01.049
M. V. Pletyukhov and E. A. Tolkachev, J. Math. Phys. 40 (1999) 93. DOI: https://doi.org/10.1063/1.532761
L. G. Mardoyan, A. N. Sissakian and V. M. Ter-Antonyan, Modern Phy. Lett. A 14 (1999) 1303. DOI: https://doi.org/10.1142/S0217732399001395
M. V. Pletyukhov and E. A. Tolkachev, J. Phys. A Math. Theor. 32 (1999) L249. DOI: https://doi.org/10.1088/0305-4470/32/23/101
I. Marquette, J. Math. Phys. 53 (2012) 022103. DOI: https://doi.org/10.1063/1.3684955
M. F. Hoque, I. Marquette and Y.-Z. Zhang, Annals of Physics 380 (2017) 121. DOI: https://doi.org/10.1016/j.aop.2017.03.003
L. G. Mardoyan, A. N. Sisakyan and V. M. Ter-Antonyan, Theor. Math. Phys. 123 (2000) 451. DOI: https://doi.org/10.1007/BF02551051
M. V. Pletyukhov and E. A. Tolkachev, J. Math. Phys. 41 (2000) 187. DOI: https://doi.org/10.1063/1.533128
L. D. Nam and L. V. Hoang, Octonionic representation of the nine-dimensional Micz-Kepler problem, The 41st Vietnam National Conference on Theoretical Physics, 2016.
T.-S. Nguyen, D.-N. Le, T.-Q. N. Thoi and V.-H. Le, J. Math. Phys. 56 (2015) 052103. DOI: https://doi.org/10.1063/1.4921171
N.-H. Phan, D.-N. Le, T.-Q. N. Thoi and V.-H. Le, J. Math. Phys. 59 (2018) 032102. DOI: https://doi.org/10.1063/1.4997693
D.-N. Le, N.-H. Phan, T.-Q. N. Thoi and V.-H. Le, J. Math. Phys. 60 (2019) 062102. DOI: https://doi.org/10.1063/1.5051787
D.-N. Le and V.-H. Le, J. Math. Phys. (2021) submitted.
V.-H. Le, T.-T. Phan and C.-T. Truong, J. Math. Phys. 52 (2011) 072101. DOI: https://doi.org/10.1063/1.3606515
N.-H. Phan and V.-H. Le, J. Math. Phys. 53 (2012) 082103. DOI: https://doi.org/10.1063/1.4740514
T. Kereselidze, G. Chkadua and J. F. Ogilvie, GESJ: Physics 2 (2016) 44.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 16-04-2021