Normed Division Algebras Application to the Monopole Physics

Author affiliations

Authors

  • Dai-Nam Le \(^1\)Department of Theoretical Physics, Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam;
    \(^2\)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam;
    \(^3\)Atomic Molecular and Optical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
    \(^4\)Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, District 7, Ho Chi Minh City, Vietnam
  • Van-Hoang Le Ho Chi Minh City University of Education http://orcid.org/0000-0003-4027-0729

DOI:

https://doi.org/10.15625/0868-3166/15905

Keywords:

Levi-Civita transformation, harmonic oscillator, MICZ-Kepler problem, duality, Dirac, Yang, and SO(8) monopoles, nine-dimensional space, octonion

Abstract

We review some normed division algebras (R, C, H, O)  applications to the monopole physics and MICZ-Kepler problems. More specifically, we will briefly review some results in applying the normed division algebras to interpret the existence of Dirac, Yang, and SO(8) monopoles. These monopoles also appear during the examination of the duality between isotropic harmonic oscillators and the MICZ-Kepler problems. We also revisit some of our newest results in the nine-dimensional MICZ-Kepler problem using the generalized Hurwitz transformation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

P. A. M. Dirac,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences133(1931)60.

H. Hopf,Mathematische Annalen104(1931) 637. DOI: https://doi.org/10.1007/BF01457962

H. Hopf,Fundam. Math.25(1935) 427. DOI: https://doi.org/10.4064/fm-25-1-427-440

J. Baez,Bulletin of the American Mathematical Society39(2002) 145. DOI: https://doi.org/10.1090/S0273-0979-01-00934-X

T. T. Wu and C. N. Yang,Phys. Rev. D12(1975) 3845. DOI: https://doi.org/10.1103/PhysRevB.12.3845

C. N. Yang,J. Math. Phys.19(1978) 320. DOI: https://doi.org/10.1111/j.1528-1157.1978.tb04495.x

C. N. Yang,Physics Today67(2014) 45. DOI: https://doi.org/10.1063/PT.3.2585

B. Grossman, T. W. Kephart and J. D. Stasheff,Commun. Math. Phys.96(1984) 431. DOI: https://doi.org/10.1007/BF01212529

S.-C. Zhang and J. Hu,Science294(2001) 823. DOI: https://doi.org/10.1126/science.294.5543.823

B. A. Bernevig, J. Hu, N. Toumbas and S.-C. Zhang,Phys. Rev. Lett.91(2003) 236803. DOI: https://doi.org/10.1103/PhysRevLett.91.236803

V.-H. Le, T.-S. Nguyen and N.-H. Phan,J. Phys. A Math. Theor.42(2009) 175204. DOI: https://doi.org/10.1088/1751-8113/42/17/175204

V.-H. Le and T.-S. Nguyen,J. Math. Phys.52(2011) 032105. DOI: https://doi.org/10.1063/1.3567422

R. B. Laughlin,Phys. Rev. Lett.50(1983) 1395. DOI: https://doi.org/10.1103/PhysRevLett.50.1395

C. Furey,Physics Letters B785(2018) 84 . DOI: https://doi.org/10.1016/j.physletb.2018.08.032

L. Boyle and S. Farnsworth,New Journal of Physics22(2020) 073023. DOI: https://doi.org/10.1088/1367-2630/ab9709

D. Bergmann and Y. Frishman,J. Math. Phys.6(1965) 1855. DOI: https://doi.org/10.1063/1.1704733

D. Zwanziger,Physical Review176(1968) 1480. DOI: https://doi.org/10.1103/PhysRev.176.1480

H. V. McIntosh and A. Cisneros,J. Math. Phys.11(1970) 896. DOI: https://doi.org/10.1063/1.1665227

L. G. Mardoyan, A. N. Sissakian and V. M. Ter-Antonyan,8D oscillator as a hidden SU(2) - monopole, 1997.

I. Bars and J. L. Rosner,Journal of Physics A: Mathematical and Theoretical53(2020) 234001. DOI: https://doi.org/10.1088/1751-8121/ab87ba

T. Levi-Civita, Acta Mathematica 30 (1906) 305. DOI: https://doi.org/10.1007/BF02418577

P. Kustaanheimo and E. Stiefel, Journal f¨ur die reine und angewandte Mathematik (Crelles Journal) 218 (1965) 204. DOI: https://doi.org/10.1515/crll.1965.218.204

M. Kibler, A. Ronveaux and T. N´egadi, J. Math. Phys. 27 (1986) 1541. DOI: https://doi.org/10.1063/1.527064

V.-H. Le and L. I. Komarov, Phy. Lett. A 177 (1993) 121. DOI: https://doi.org/10.1016/0375-9601(93)90520-A

A. Hurwitz, Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse (1898) 309.

S. Okubo, Introduction to octonion and other non-associative algebras in physics, vol. 2, Cambridge University Press, 1995. DOI: https://doi.org/10.1017/CBO9780511524479

J. A. Nieto and L. N. Alejo-Armenta, International Journal of Modern Physics A 16 (2001) 4207. DOI: https://doi.org/10.1142/S0217751X01005213

D. W. Lyons, Mathematics Magazine 76 (2003) 87. DOI: https://doi.org/10.1080/0025570X.2003.11953158

K. Hasebe, Symmetry, Integrability and Geometry: Methods and Applications 6 (2010) 071.

V.-H. Le, T. J. Viloria and A.-T. Le, J. Phys. A Math. Theor. 24 (1991) 3021. DOI: https://doi.org/10.1088/0305-4470/24/13/017

L. Davtyan, L. Mardoyan, G. Pogosyan, A. Sissakian and V. Ter-Antonyan, J. Phys. A Math. Theor. 20 (1987) 6121. DOI: https://doi.org/10.1088/0305-4470/20/17/044

D. Lambert and M. Kibler, J. Phys. A Math. Theor. 21 (1988) 307. DOI: https://doi.org/10.1088/0305-4470/21/2/012

A. Trautman, International Journal of Theoretical Physics 16 (1977) 561. DOI: https://doi.org/10.1007/BF01811088

L. H. Ryder, J. Phys. A Math. Theor. 13 (1980) 437. DOI: https://doi.org/10.1088/0305-4470/13/2/012

F. Cooper, A. Khare and U. P. Sukhatme, Supersymmetry in quantum mechanics, World Scientific, 2001. DOI: https://doi.org/10.1142/4687

I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic press, 2014.

M. M. Nieto, Am. J. Phys. 47 (1979) 1067. DOI: https://doi.org/10.1119/1.11976

I. Mladenov and V. Tsanov, Journal of Geometry and Physics 2 (1985) 17 . DOI: https://doi.org/10.1016/0393-0440(85)90016-6

V. Aquilanti, S. Cavalli and C. Coletti, Chem. Phys. 214 (1997) 1 . DOI: https://doi.org/10.1016/S0301-0104(96)00310-2

S. M. Al-Jaber, International Journal of Theoretical Physics 37 (1998) 1289. DOI: https://doi.org/10.1023/A:1026679921970

G. Meng, J. Math. Phys. 48 (2007) 032105. DOI: https://doi.org/10.1063/1.2712420

G. Meng, Phys. At. Nucl. 71 (2008) 946. DOI: https://doi.org/10.1134/S1063778808050256

G. Meng, J. London Math. Soc. 81 (2010) 663. DOI: https://doi.org/10.1112/jlms/jdq019

G. Meng and R. Zhang, J. Math. Phys. 52 (2011) 042106. DOI: https://doi.org/10.1063/1.3574886

H. Kleinert, Group dynamics of the hydrogen atom, Gordon and Breach, New York, 1968.

C. Pedder, J. Sonner and D. Tong, Journal of High Energy Physics 2008 (2008) 065. DOI: https://doi.org/10.1088/1126-6708/2008/03/065

A. Cisneros and H. V. McIntosh, J. Math. Phys. 10 (1969) 277. DOI: https://doi.org/10.1063/1.1664843

D.-N. Le, N.-T. D. Hoang and V.-H. Le, J. Math. Phys. 58 (2017) 042102. DOI: https://doi.org/10.1063/1.4979618

D.-N. Le, N.-T. D. Hoang and V.-H. Le, J. Math. Phys. 59 (2018) 032101. DOI: https://doi.org/10.1063/1.4997532

L. D. Nam, P. A. Luan, L. P. Su and P. N. Hung, HCMUE Journal of Science: Natural Sciences and Technology 16 (2019) 103. DOI: https://doi.org/10.54607/hcmue.js.16.3.2456(2019)

J. Moser, Communications on Pure and Applied Mathematics 23 (1970) 609. DOI: https://doi.org/10.1002/cpa.3160230406

M. Boiteux, Physica 65 (1973) 381. DOI: https://doi.org/10.1016/0031-8914(73)90353-4

M. Boiteux, J. Math. Phys. 23 (1982) 1311. DOI: https://doi.org/10.1063/1.525515

A. O. Barut, C. K. E. Schneider and R. Wilson, J. Math. Phys. 20 (1979) 2244. DOI: https://doi.org/10.1063/1.524005

T. Iwai and Y. Uwano, J. Math. Phys. 27 (1986) 1523. DOI: https://doi.org/10.1063/1.527112

A. O. Barut and G. L. Bornzin, J. Math. Phys. 12 (1971) 841. DOI: https://doi.org/10.1063/1.1665653

S. Bellucci, S. Krivonos and V. Ohanyan, Physical Review D 76 (2007) 105023. DOI: https://doi.org/10.1103/PhysRevD.76.105023

I. Marquette, J. Math. Phys. 51 (2010) 102105. DOI: https://doi.org/10.1063/1.3496900

L. G. Mardoyan, Phys. At. Nucl. 68 (2005) 1746. DOI: https://doi.org/10.1134/1.2121925

L. Mardoyan, A. Nersessian and A. Yeranyan, Phy. Lett. A 366 (2007) 30. DOI: https://doi.org/10.1016/j.physleta.2007.01.049

M. V. Pletyukhov and E. A. Tolkachev, J. Math. Phys. 40 (1999) 93. DOI: https://doi.org/10.1063/1.532761

L. G. Mardoyan, A. N. Sissakian and V. M. Ter-Antonyan, Modern Phy. Lett. A 14 (1999) 1303. DOI: https://doi.org/10.1142/S0217732399001395

M. V. Pletyukhov and E. A. Tolkachev, J. Phys. A Math. Theor. 32 (1999) L249. DOI: https://doi.org/10.1088/0305-4470/32/23/101

I. Marquette, J. Math. Phys. 53 (2012) 022103. DOI: https://doi.org/10.1063/1.3684955

M. F. Hoque, I. Marquette and Y.-Z. Zhang, Annals of Physics 380 (2017) 121. DOI: https://doi.org/10.1016/j.aop.2017.03.003

L. G. Mardoyan, A. N. Sisakyan and V. M. Ter-Antonyan, Theor. Math. Phys. 123 (2000) 451. DOI: https://doi.org/10.1007/BF02551051

M. V. Pletyukhov and E. A. Tolkachev, J. Math. Phys. 41 (2000) 187. DOI: https://doi.org/10.1063/1.533128

L. D. Nam and L. V. Hoang, Octonionic representation of the nine-dimensional Micz-Kepler problem, The 41st Vietnam National Conference on Theoretical Physics, 2016.

T.-S. Nguyen, D.-N. Le, T.-Q. N. Thoi and V.-H. Le, J. Math. Phys. 56 (2015) 052103. DOI: https://doi.org/10.1063/1.4921171

N.-H. Phan, D.-N. Le, T.-Q. N. Thoi and V.-H. Le, J. Math. Phys. 59 (2018) 032102. DOI: https://doi.org/10.1063/1.4997693

D.-N. Le, N.-H. Phan, T.-Q. N. Thoi and V.-H. Le, J. Math. Phys. 60 (2019) 062102. DOI: https://doi.org/10.1063/1.5051787

D.-N. Le and V.-H. Le, J. Math. Phys. (2021) submitted.

V.-H. Le, T.-T. Phan and C.-T. Truong, J. Math. Phys. 52 (2011) 072101. DOI: https://doi.org/10.1063/1.3606515

N.-H. Phan and V.-H. Le, J. Math. Phys. 53 (2012) 082103. DOI: https://doi.org/10.1063/1.4740514

T. Kereselidze, G. Chkadua and J. F. Ogilvie, GESJ: Physics 2 (2016) 44.

Downloads

Published

16-04-2021

How to Cite

[1]
D.-N. Le and V.-H. Le, “Normed Division Algebras Application to the Monopole Physics”, Comm. Phys., vol. 31, no. 3, p. 235, Apr. 2021.

Issue

Section

Invited Papers
Received 02-03-2021
Published 16-04-2021

Most read articles by the same author(s)