Vol. 31 No. 3 (2021)

Magnetic Domain Walls Moving in Curved Permalloy Nanowires under Continuous and Pulsed Fields

Duc-Quang Hoang
Ton Duc Thang University
Xuan-Huu Cao
Institute of Research and Development, Duy Tan University, Da Nang 550 000, VietnamANDFaculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang 550000, Vietnam
Hoai-Thuong Nguyen
Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700 000, Vietnam
Vinh-Ai Dao
Institute of Research and Development, Duy Tan University, Da Nang 550 000, VietnamANDFuture Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700 000, Vietnam

Published 15-03-2021


  • domain walls,
  • spintronics,
  • Lorentz microscope,
  • nanostructures,
  • alloy

How to Cite

Hoang, D.-Q., Cao, X.-H., Nguyen, . H.-T., & Dao, V.-A. (2021). Magnetic Domain Walls Moving in Curved Permalloy Nanowires under Continuous and Pulsed Fields. Communications in Physics, 31(3), 289. https://doi.org/10.15625/0868-3166/15768


Magnetic domain walls created and propagated in curved permally nanowires under continuous and pulsed fields in a Lorentz microscope. Using such nanowires aims to create a single or multiple magnetic domain walls in typical areas of those structures, an external magnetic field then applies along the long axis of these nanowires. Following that the created domain walls are propagated from one end to the other end of each wire by increasing the continuous/pulsed field strength. At each increased field value, a Fresnel image is recorded. The obtained results show that the characteristics of those created and propagated domain walls are dependent on various parameters, i.e. connecting structures, wall types and chiralities. Corners between the straight and linking sections of those curved nanowires also play a crucial role along witth the local defects created in these wire-edges and surfaces where a point-defect is considered as a potential well that could pin/distort those created/propagated domain walls. By the aid of this observations, the dynamic properties of domain walls with the creating and propagating processes in those curved nanowires are exposed. These outcomes are vital to design novel domain wall trap structures supporting reproducible domain wall motions. That are of interest in providing a better understanding of multiple bits moving in the furure 3D racetrack memory, logic gates, shift register and other spintronic/computing devices.


Download data is not yet available.


Metrics Loading ...


  1. [1] S. S. P. Parkin, M. Hayashi and L. Thomas, Science 320 (2008) 190.
  2. [2] D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, R. P. Cowburn, Science 296
  3. (2002) 2003.
  4. [3] Y. Nakatani, A. Thiaville and J. Miltat, Journal of Magnetism and Magnetic Materials 290–291 (2005) 750.
  5. [4] M. Klaui, ¨ Journal of Physics: Condensed Matter 20 (2008) R313001.
  6. [5] L. Caretta, M. Mann, F. Buttner, K. Ueda, B. Pfau, C. M. G ¨ unther, P. Hessing, A. Churikova, C. Klose, M. ¨
  7. Schneider, D. Engel, C. Marcus, D. Bono, K. Bagschik, S. Eisebitt and G.S.D. Beach, Nature Nanotechnology
  8. (2018) 1154.
  9. [6] M. A. Bahri, B. Borie, T. L. Jin, R. Sbiaa, M. Klaui and S. N. Piramanayagam, ¨ Physical Review Applied 11
  10. (2019) 024023.
  11. [7] X. Zheng, J. Wang, G. Li, X. Lu, W. Li, Y. Wang, Y. Chen, H. Yin, J. Wu and Y. Xu, ACS Applied Electronic
  12. Materials 2 (2020) 2375.
  13. [8] T. J. Broomhall, A. W. Rushforth, M. C. Rosamond, E. H. Linfield and T. J. Hayward, Physical Review Applied
  14. (2020) 024039.
  15. [9] C. Brownlie, S. McVitie, J. N. Chapman and C. D. W. Wilkinson, Journal of Applied Physics 100 (2006) 033902.
  16. [10] R. D. McMichael and M. J. Donahue, IEEE Transactions on Magnetics 33 (1997) 4167.
  17. [11] D. Q. Hoang, M. T. Tran, X. H. Cao and D. T. Ngo, RSC Advances 7 (2017) 49188.
  18. [12] V.N. M. Ho, L.D.A. Ho, M.T. Tran, X.H. Cao, V.A. Dao, D.H. Tong, D.T. Ngo and D.Q. Hoang, RSC Advances
  19. (2018) 41828.
  20. [13] K. J. O’Shea, Putting a leash on the domain wall: a TEM investigation into the controlled behavior of domain
  21. walls in ferromagnetic nanostructures, PhD thesis, University of Glasgow (2010) 37–38.
  22. [14] M. A. Basith, S. McVitie, D. McGrouther, J. N. Chapman and M. R. Weaver, Journal of Applied Physics 110
  23. (2011) 083904.
  24. [15] L. D. A. Ho, M. T. Tran, X. H. Cao, V. A. Dao, D. T. Ngo and D. Q. Hoang, RSC Advances 8 (2018) 14539.
  25. [16] https://www.tedpella.com/ (cited 08/12/2020)
  26. [17] J. N. Chapman, Journal Physics D: Applied Physics 17 (1984) 623.
  27. [18] D. Q. Hoang, X. H. Cao, H. T. Nguyen and V. A. Dao, Nanotechnology 32 (2021) 095703