Vol. 31 No. 3 (2021)
Papers

Aggregation of Zoospores on Sharklet Microtopographic Surfaces

Nhung Thi Thuy Nguyen
Institute of Physics, Vietnam Academy of Science and Technology
Trinh Xuan Hoang
Institute of Physics, Vietnam Academy of Science and Technology

Published 16-04-2021

Keywords

  • biofouling,
  • aggregation,
  • extended SEA model,
  • Monte Carlo simulation

How to Cite

Nguyen, N. T. T., & Hoang, T. X. (2021). Aggregation of Zoospores on Sharklet Microtopographic Surfaces. Communications in Physics, 31(3), 279. https://doi.org/10.15625/0868-3166/15668

Abstract

Surfaces with engineered microtopographies are potential candidate against biofouling to replace the use of biocides in the marine environment. Understanding the antifouling mechanism of microtopographic surfaces against marine microorganisms, however, has been limited. In this work, we theoretically studied the aggregation of Ulva linza zoospores on the Sharklet topographic surfaces by employing the extended Surface Energetic Attachment (SEA) model proposed
in a previous work. The energy parameters of the model were obtained by matching theoretical results with experimental data for one type of Sharklet surface. Monte Carlo simulations were then carried out for a series of Sharklet surfaces with various numbers of distinct features. In
agreement with prior experimental results, our simulations indicate that engineered topographies promote smaller aggregates than those on a smooth surface. Furthermore, we show that the maximum effect of the Sharklet topography on the aggregate size of U. linza can be obtained with just 3 distinct features.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. C. M. Magin, S. P. Cooper and A. B. Brennan, Materials Today 13 (2010) 36–44.
  2. A. J. Scardino and R. de Nys, Biofouling 27 (2011) 73–86.
  3. C. M. Kirschner and A. B. Brennan, Annu. Rev. Mater. Res. 42 (2012) 211–229.
  4. A. Lindholdt, K. Dam-Johansen, S. Olsen, D. M. Yebra and S. Kiil, J. Coat. Technol. Res. 12 (2015) 415–444.
  5. D. M. Yebra, S. Kiil and K. Dam-Johansen, Prog. Org. Coat. 50 (2004) 75–104.
  6. K. V. Thomas and S. Brooks, Biofouling 26 (2010) 73–88.
  7. M. L. Carman, T. G. Estes, A. W. Feinberg, J. F. Schumacher, W. Wilkerson, L. H. Wilson, M. E. Callow, J. A. Callow and A. B. Brennan, Biofouling 22 (2006) 11–21.
  8. M. E. Callow, A. R. Jennings, A. Brennan, C. Seegert, A. Gibson, L. Wilson, A. Feinberg, R. Baney and J. Callow, Biofouling 18 (2002) 229–236.
  9. A. Scardino, E. Harvey and R. De Nys, Biofouling 22 (2006) 55–60.
  10. A. Scardino, J. Guenther and R. De Nys, Biofouling 24 (2008) 45–53.
  11. C. J. Long, J. A. Finlay, M. E. Callow, J. A. Callow and A. B. Brennan, Biofouling 26 (2010) 941–952.
  12. R. N. Wenzel, Ind. Eng. Chem. 28 (1936) 988–994.
  13. A. Cassie and S. Baxter, Trans. Faraday Soc. 40 (1944) 546–551.
  14. J. T. Decker, C. M. Kirschner, C. J. Long, J. A. Finlay, M. E. Callow, J. A. Callow and A. B. Brennan, Langmuir 29 (2013) 13023–13030.
  15. T. X. Hoang, H. T. Mai, A. B. Brennan and L. Le, Biofouling 35 (2019) 684–695.
  16. S. Katharios-Lanwermeyer, C. Xi, N. Jakubovics and A. Rickard, Biofouling 30 (2014) 1235–1251.
  17. H. Dang and C. R. Lovell, Microbiol. Mol. Biol. Rev. 80 (2016) 91–138.
  18. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys. 21 (1953) 1087–1092.
  19. C. J. Long, J. F. Schumacher, P. A. Robinson, J. A. Finlay, M. E. Callow, J. A. Callow and A. B. Brennan, Biofouling 26 (2010) 411–419.
  20. M. Rovere, D. Heermann and K. Binder, J. Phys. Condens. Matter 2 (1990) 7009.
  21. J. T. Decker, J. T. Sheats and A. B. Brennan, Langmuir 30 (2014) 15212–15218.