Vol. 30 No. 4 (2020)
Papers

Development of Novel 3d Printable Graphene-based Composite Towards Fabrication of Thin Film Electrode Material

Hanh Le T. M.
Institute for Tropical Technology, Vietnam Academy of Science and Technology, Vietnam
T. Thuy Do
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
T. Dung Hoang
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
T. Tung Doan
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
X. Minh Vu
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
T. Lan Pham
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
T. Lu Le
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
D. Lam Tran
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
T. Dung Nguyen
Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Cover Vol 30 No 4 December 2020

Published 14-11-2020

Keywords

  • 3D printable ink,
  • graphene composite,
  • polyvinyl alcohol,
  • ascorbic acid,
  • electrode material

How to Cite

Le T. M., H., Do, T. T., Hoang, T. D., Doan, T. T., Vu, X. M., Pham, T. L., Le, T. L., Tran, D. L., & Nguyen, T. D. (2020). Development of Novel 3d Printable Graphene-based Composite Towards Fabrication of Thin Film Electrode Material. Communications in Physics, 30(4), 383. https://doi.org/10.15625/0868-3166/30/4/15447

Abstract

Graphene/polymer composite thin film electrodes have many important applications, but the fabrication of these electrodes is often difficult because of poor processability of graphene. This paper presents the primary results on using 3D printing technique for thin film electrode preparation from graphene-based composite ink. The printing ink was synthesized from graphene oxide (GO), polyvinyl alcohol (PVA) as a binder and stabilizer, and ascorbic acid (AA) as a reducing agent. The measured zeta potential value showed that PVA can make GO ink more stable, the absolute value of zeta potential increased from 10.1 mV (without PVA) to 31.4 mV (with 12 wt. % PVA). The thin film electrodes can be easily printed using GO/PVA/AA composite ink, and obtained voltammograms recorded on the surface of these electrodes in 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] solution clearly indicated the GO reduction by AA. The best electrochemical properties of printed electrodes were founded in the case of composite ink with wt/wt ratio GO:PVA:AA = 80:12:8. The cyclic voltammetric results demonstrated the linear dependence of the anodic and cathodic signals of redox couple [Fe(CN)6]4-/K3[Fe(CN)6]3- with the   square root of scan rate, indicating a reversible redox reaction on the electrode surface. The thin films printed from GO/PVA/AA composite ink can be used as electrode material for diverse applications in electrochemistry.

Downloads

Download data is not yet available.

References

  1. [1] Wongbong Choi and Jo-won Lee, Graphene: synthesis and applications, CRC Press, 2011.
  2. [2] M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng and H. I. Poh, Trends Analyst. Chem. 29 (2010) 954.
  3. [3] Maher F. El-Kady, Richard B. Kaner, Nature Communications 4 (2013) 1475.
  4. [4] M. Y. Yen, C. K. Hsieh, C. C. Teng, M. C. Hsiao, P. I. Liu, C. C. M. Ma, M. C. Tsai, C. H. Tsai, Y. R. Lin
  5. and T. Y. Chou , RSC Adv. 2 (2012) 2725
  6. [5] Cao T. Thanh, Nguyen H. Binh, Nguyen V. Tu, Vu T. Thu, M. Bayle, M. Paillet, J. L. Sauvajol, Phan B. Thang,
  7. Tran D. Lam and Phan N. Minh, Sens. Actuators B Chem. 260 (2018) 78.
  8. [6] Shannon M. Notley, Drew R. Evans, Adv. Colloid Interface Sci. 209 (2014) 196.
  9. [7] T. Dung Nguyen, T. T. Huyen Dang, Hoang Thai, L. Huy Nguyen, D. Lam Tran, B. Piro and M. C. Pham,
  10. Electroanalysis 28 (2016) 1907.
  11. [8] F. Zhou, S. Han, Q. Qian and Y. Zhu, Chem. Phys. Lett. 728 (2019) 6.
  12. [9] Hoang T. Dung, Ngo T. Dung, Trinh Q. Dung, Doan T. Tung, Nguyen T. Yen, Le T. T. Tam, Tran V. Thu, Phan
  13. N. Hong and Le T. Lu, Vietnam J. Sci. Tech. 56 (2018) 574.
  14. [10] Doan T. Tung, Le T.T Tam, Hoang T. Dung, Ngo T. Dung, Hoang T. Ha, Nguyen T. Dung, Thai Hoang, Tran
  15. D. Lam, Dang T. Chien, Phan N. Hong, Phan N. Minh, Nguyen V. Quynh and Le T. Lu, J. Electron. Mater. 49
  16. (2020) 4671.
  17. [11] F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, Nano Energy 40 (2017) 418.
  18. [12] V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff and S. K. Manohar,
  19. Angewandte Chemie International Edition 122 (2010) 2154.
  20. [13] L. Baptista-Pires, A. Escosura-Muniz, M. Balsells, J. C. Zuaznabar-Gardona and A. Merkoci, Electrochem. Commun. 98 (2019) 6.
  21. [14] C. Zhu, T. Liu, F. Qian, T. Y. Han, E. B. Duoss, J. D. Kuntz, C. M. Spadaccini, M. A. Worsley, Y. Li, Nano
  22. Lett. 6 (2016) 3448.
  23. [15] E. García‐Tuñon, S. Barg, J. Franco, R. Bell, S. Eslava, E. D'Elia, F. Guitian, E. Saiz, Adv. Mate. 27 (2015) 1688.
  24. [16] Q. Ran, S. Wu and J. Chen, Polym. Plast. Technol. Eng. 46 (2007) 1117.
  25. [17] X. Zhao, Q. Zhang, D. Chen and P. Lu, Macromolecules 43 (2010) 2357.
  26. [18] P.B. Pawar, S. Shukla and S. Saxena, J. Power Sources 321 (2016) 102.
  27. [19] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M.
  28. Tour, ACS Nano 4 (2010) 4806.
  29. [20] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun. 46 (2010) 1112.
  30. [21] I. Svancara, K. Kalcher, A. Walcarius and K. Vytras, Analysis with Carbon Paste Electrodes, CRS Press, Francis
  31. & Taylor, 2012.
  32. [22] Fritz Scholz (Ed.), Electroanalytical methods: guide to experiments and applications, Springer-Verlag Berlin
  33. Heidelberg, 2010.