Development of Novel 3d Printable Graphene-based Composite Towards Fabrication of Thin Film Electrode Material

Hanh Le T. M., T. Thuy Do, T. Dung Hoang, T. Tung Doan, X. Minh Vu, T. Lan Pham, T. Lu Le, D. Lam Tran, T. Dung Nguyen
Author affiliations

Authors

  • Hanh Le T. M. Institute for Tropical Technology, Vietnam Academy of Science and Technology, Vietnam
  • T. Thuy Do Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • T. Dung Hoang Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • T. Tung Doan Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • X. Minh Vu Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • T. Lan Pham Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • T. Lu Le Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • D. Lam Tran Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • T. Dung Nguyen Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/30/4/15447

Keywords:

3D printable ink, graphene composite, polyvinyl alcohol, ascorbic acid, electrode material

Abstract

Graphene/polymer composite thin film electrodes have many important applications, but the fabrication of these electrodes is often difficult because of poor processability of graphene. This paper presents the primary results on using 3D printing technique for thin film electrode preparation from graphene-based composite ink. The printing ink was synthesized from graphene oxide (GO), polyvinyl alcohol (PVA) as a binder and stabilizer, and ascorbic acid (AA) as a reducing agent. The measured zeta potential value showed that PVA can make GO ink more stable, the absolute value of zeta potential increased from 10.1 mV (without PVA) to 31.4 mV (with 12 wt. % PVA). The thin film electrodes can be easily printed using GO/PVA/AA composite ink, and obtained voltammograms recorded on the surface of these electrodes in 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] solution clearly indicated the GO reduction by AA. The best electrochemical properties of printed electrodes were founded in the case of composite ink with wt/wt ratio GO:PVA:AA = 80:12:8. The cyclic voltammetric results demonstrated the linear dependence of the anodic and cathodic signals of redox couple [Fe(CN)6]4-/K3[Fe(CN)6]3- with the   square root of scan rate, indicating a reversible redox reaction on the electrode surface. The thin films printed from GO/PVA/AA composite ink can be used as electrode material for diverse applications in electrochemistry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Wongbong Choi and Jo-won Lee, Graphene: synthesis and applications, CRC Press, 2011.

[2] M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng and H. I. Poh, Trends Analyst. Chem. 29 (2010) 954. DOI: https://doi.org/10.1016/j.trac.2010.05.011

[3] Maher F. El-Kady, Richard B. Kaner, Nature Communications 4 (2013) 1475. DOI: https://doi.org/10.1038/ncomms2446

[4] M. Y. Yen, C. K. Hsieh, C. C. Teng, M. C. Hsiao, P. I. Liu, C. C. M. Ma, M. C. Tsai, C. H. Tsai, Y. R. Lin

and T. Y. Chou , RSC Adv. 2 (2012) 2725 DOI: https://doi.org/10.1039/c2ra00970f

[5] Cao T. Thanh, Nguyen H. Binh, Nguyen V. Tu, Vu T. Thu, M. Bayle, M. Paillet, J. L. Sauvajol, Phan B. Thang,

Tran D. Lam and Phan N. Minh, Sens. Actuators B Chem. 260 (2018) 78. DOI: https://doi.org/10.1016/j.snb.2017.12.191

[6] Shannon M. Notley, Drew R. Evans, Adv. Colloid Interface Sci. 209 (2014) 196. DOI: https://doi.org/10.1016/j.cis.2014.04.006

[7] T. Dung Nguyen, T. T. Huyen Dang, Hoang Thai, L. Huy Nguyen, D. Lam Tran, B. Piro and M. C. Pham,

Electroanalysis 28 (2016) 1907.

[8] F. Zhou, S. Han, Q. Qian and Y. Zhu, Chem. Phys. Lett. 728 (2019) 6. DOI: https://doi.org/10.1016/j.cplett.2019.04.062

[9] Hoang T. Dung, Ngo T. Dung, Trinh Q. Dung, Doan T. Tung, Nguyen T. Yen, Le T. T. Tam, Tran V. Thu, Phan

N. Hong and Le T. Lu, Vietnam J. Sci. Tech. 56 (2018) 574. DOI: https://doi.org/10.1002/vjch.201800050

[10] Doan T. Tung, Le T.T Tam, Hoang T. Dung, Ngo T. Dung, Hoang T. Ha, Nguyen T. Dung, Thai Hoang, Tran

D. Lam, Dang T. Chien, Phan N. Hong, Phan N. Minh, Nguyen V. Quynh and Le T. Lu, J. Electron. Mater. 49

(2020) 4671.

[11] F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, Nano Energy 40 (2017) 418. DOI: https://doi.org/10.1016/j.nanoen.2017.08.037

[12] V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff and S. K. Manohar,

Angewandte Chemie International Edition 122 (2010) 2154.

[13] L. Baptista-Pires, A. Escosura-Muniz, M. Balsells, J. C. Zuaznabar-Gardona and A. Merkoci, Electrochem. Commun. 98 (2019) 6. DOI: https://doi.org/10.1016/j.elecom.2018.11.001

[14] C. Zhu, T. Liu, F. Qian, T. Y. Han, E. B. Duoss, J. D. Kuntz, C. M. Spadaccini, M. A. Worsley, Y. Li, Nano

Lett. 6 (2016) 3448.

[15] E. García‐Tuñon, S. Barg, J. Franco, R. Bell, S. Eslava, E. D'Elia, F. Guitian, E. Saiz, Adv. Mate. 27 (2015) 1688. DOI: https://doi.org/10.1002/adma.201405046

[16] Q. Ran, S. Wu and J. Chen, Polym. Plast. Technol. Eng. 46 (2007) 1117. DOI: https://doi.org/10.1080/03602550701557944

[17] X. Zhao, Q. Zhang, D. Chen and P. Lu, Macromolecules 43 (2010) 2357. DOI: https://doi.org/10.1021/ma902862u

[18] P.B. Pawar, S. Shukla and S. Saxena, J. Power Sources 321 (2016) 102. DOI: https://doi.org/10.1016/j.jpowsour.2016.04.127

[19] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M.

Tour, ACS Nano 4 (2010) 4806. DOI: https://doi.org/10.1021/nn1006368

[20] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun. 46 (2010) 1112. DOI: https://doi.org/10.1039/B917705A

[21] I. Svancara, K. Kalcher, A. Walcarius and K. Vytras, Analysis with Carbon Paste Electrodes, CRS Press, Francis

& Taylor, 2012.

[22] Fritz Scholz (Ed.), Electroanalytical methods: guide to experiments and applications, Springer-Verlag Berlin

Heidelberg, 2010.

Downloads

Published

14-11-2020

How to Cite

[1]
H. Le T. M., “Development of Novel 3d Printable Graphene-based Composite Towards Fabrication of Thin Film Electrode Material”, Comm. Phys., vol. 30, no. 4, p. 383, Nov. 2020.

Issue

Section

Papers
Received 01-09-2020
Accepted 13-11-2020
Published 14-11-2020