Exact Mode Shapes of T-shaped and Overhang-shaped Microcantilevers
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/30/3/15080Keywords:
microcantilever, mode shape, analytical method, overhang-shaped, T-shapedAbstract
Resonance frequencies and mode shapes of microcantilevers are of important interest in micro-mechanical systems for enhancing the functionality and applicable range of the cantilevers in vibration transducing, energy harvesting, and highly sensitive measurement. In this study, using the Euler-Bernoulli theory for beam, we figured out the exact mode shapes of cantilevers of varying widths such as the overhang- or T-shaped cantilevers. The obtained mode shapes have been shown to significantly deviate from the approximate forms of a rectangular cantilever that are commonly used in mechanics and physics. They were then used to figure out the resonance frequencies of the cantilever. The analytical solutions have been confirmed by using the finite element method simulations with very low deviation. This study suggested a method for correctly obtaining the resonance frequency of microcantilevers with complicated dimensions, such as the doubly clamped cantilever with the undercut, with the overhangs at the clamped positions, or with an attached mass in the middle.Downloads
Metrics
References
C. H. Metzger and K. Karrai, Nature 432 (2004) 1002. DOI: https://doi.org/10.1038/nature03118
T. Corbitt, D. Ottaway, E. Innerhofer, J. Pelc and N. Mavalvala, Phys. Rev. A 74 (2006) 021802(R). DOI: https://doi.org/10.1103/PhysRevA.74.021802
P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller and M. D. Lukin, Nat. Phys. 6 (2010) 602–608. DOI: https://doi.org/10.1038/nphys1679
N. D. Vy, L. T. Dat and T. Iida, Appl. Phys. Lett. 109 (2016) 054102. DOI: https://doi.org/10.1063/1.4960380
J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber and J. K. Gimzewski, Science 288 (2000) 316–318. DOI: https://doi.org/10.1126/science.288.5464.316
B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo and C. Batt, Appl. Phys. Lett. 77 (2000) 450–452. DOI: https://doi.org/10.1063/1.127006
B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo and C. Batt, J. Vac. Sci. Technol. B - Microelectron. Nanometer. Struct. Process. Meas. Phenom. 19 (2001) 2825–2828. DOI: https://doi.org/10.1116/1.1421572
F. Huber, H. P. Lang, J. Zhang, D. Rimoldi and C. Gerber, Swiss medical weekly 145 (2015) .
C. A. Savran, S. M. Knudsen, A. D. Ellington and S. R. Manalis, Anal. Chem. 76 (2004) 3194–3198. DOI: https://doi.org/10.1021/ac049859f
S.-J. Hyun, H.-S. Kim, Y.-J. Kim and H.-I. Jung, Sens. Actuators B: Chem. 117 (2006) 415–419. DOI: https://doi.org/10.1016/j.snb.2005.11.054
P. Datskos, S. Rajic and I. Datskou, Ultramicroscopy 82 (2000) 49 – 56. DOI: https://doi.org/10.1016/S0304-3991(99)00140-0
L. T. Dat, H. T. Huy and N. D. Vy, Commun. in Physics 28 (2018) 255. DOI: https://doi.org/10.15625/0868-3166/28/3/12673
T. Thundat, R. J. Warmack, G. Y. Chen and D. P. Allison, Appl. Phys. Lett. 64 (1994) 2894–2896. DOI: https://doi.org/10.1063/1.111407
S. Guillon, D. Saya, L. Mazenq, S. Perisanu, P. Vincent, A. Lazarus, O. Thomas and L. Nicu, Nanotechnology 22 (2011) 245501. DOI: https://doi.org/10.1088/0957-4484/22/24/245501
J. A. Plaza, K. Zinoviev, G. Villanueva, M. lvarez, J. Tamayo, C. Domnguez and L. M. Lechuga, Appl. Phys. Lett. 89 (2006) 094109. DOI: https://doi.org/10.1063/1.2345234
S.-D. Kwon, Appl. Phys. Lett. 97 (2010) 164102. DOI: https://doi.org/10.1063/1.3503609
J. E. Sader, Rev. Sci. Instrum. 66 (1995) 4583–4587. DOI: https://doi.org/10.1063/1.1145292
J. E. Sader, J. A. Sanelli, B. D. Adamson, J. P. Monty, X. Wei, S. A. Crawford, J. R. Friend, I. Marusic, P. Mulvaney and E. J. Bieske, Rev. Sci. Instrum. 83 (2012) 103705. DOI: https://doi.org/10.1063/1.4757398
G. Zhang, L. Zhao, Z. Jiang, S. Yang, Y. Zhao, E. Huang, X. Wang and Z. Liu, J. Phys. D: Appl. Phys. 44 (2011) 425402. DOI: https://doi.org/10.1088/0022-3727/44/42/425402
N. D. Vy, N. V. Cuong and C. M. Hoang, J. Mecha. 35 (2018) 351–358. DOI: https://doi.org/10.1017/jmech.2018.22
S. Timoshenko and D. Young, Engineering mechanics: Statics, no. v. 1, McGraw-Hill Book Company, Inc., 1937.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 06-07-2020
Published 20-10-2020