Direct Synthesis of Multi-layer MoS\(_2\) Nanodots by Chemical Vapor Deposition


  • Vy Anh Vuong International Training Institute for Materials Science (ITIMS)
  • Chu Manh Hung International Training Institute for Materials Science (ITIMS)



MoS2, thin layer, nanodots, CVD


The current work reports a direct synthesis of multi-layer MoS2 nanodots by a chemical vapor deposition method. The morphological, structural and optical properties of the growing MoS2 are investigated by field emission scanning electron microscopy (FESEM), Raman and Photoluminescence (PL) spectroscopy, respectively. High magnification FESEM image reveals a layer of MoS2 nanodots with the average size of about 10 nm. Resonance Raman data exhibits the two active E12g and A1g modes corresponding to in-plane variation of Mo and S atoms centered at 383.3 cm-1 and to out of plane variation of S atoms located at 407.1 cm-1, respectively. The spacing between two peaks is about 23.8 cm-1, which can be used to evaluate the number of MoS2 layer. The Raman spectrum also indicates any intensity enhancement of the A1g peak compared to the E12g peak. This result is elucidated through the quantum confinement effect. The PL emission shows a pronounced peak at 505 nm that is significant blue shift compared to single MoS2 layer. The interpretation of this phenomena is discussed in detail.


Download data is not yet available.


M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broad band optical modulator, Nature. 474 (2011) 64–67. doi:10.1038/nature10067.

S.J. Park, S.W. Pak, D. Qiu, J.H. Kang, D.Y. Song, E.K. Kim, Structural and optical characterization of MoS2 quantum dots defined by thermal annealing, J. Lumin. 183 (2017) 62–67. doi:10.1016/j.jlumin.2016.11.014.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils., Science. 324 (2009) 1312–4. doi:10.1126/science.1171245.

J. Park, N. Choudhary, J. Smith, G. Lee, M. Kim, W. Choi, Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices, Appl. Phys. Lett. 106 (2015). doi:10.1063/1.4905476.

X. Ling, Y. Lee, Y. Lin, W. Fang, L. Yu, M.S. Dresselhaus, J. Kong, Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition, Nano Lett. 14 (2014) 140129131422004. doi:10.1021/nl4033704.

X. Wang, H. Feng, Y. Wu, L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition, J. Am. Chem. Soc. 135 (2013) 5304–5307. doi:10.1021/ja4013485.

X. Zhu, J. Xiang, J. Li, C. Feng, P. Liu, B. Xiang, Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups, J. Colloid Interface Sci. 511 (2018) 209–214. doi:10.1016/j.jcis.2017.09.118.

L. Lin, Y. Xu, S. Zhang, I.M. Ross, A.C.M. Ong, D.A. Allwood, Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling, ACS Nano. 7 (2013) 8214–8223. doi:10.1021/nn403682r.

X. Lu, R. Wang, L. Hao, F. Yang, W. Jiao, P. Peng, F. Yuan, W. Liu, Oxidative etching of MoS2 /WS2 nanosheets to their QDs by facile UV irradiation, Phys. Chem. Chem. Phys. 18 (2016) 31211–31216. doi:10.1039/C6CP06748D.

G.U. Siddiqui, J. Ali, K.H. Choi, Y. Jang, K. Lee, Fabrication of blue luminescent MoS2 quantum dots by wet grinding assisted co-solvent sonication, J. Lumin. 169 (2016) 342–347. doi:10.1016/j.jlumin.2015.09.028.

Z. Gan, Q. Gui, Y. Shan, P. Pan, N. Zhang, L. Zhang, Photoluminescence of MoS2 quantum dots quenched by hydrogen peroxide: A fluorescent sensor for hydrogen peroxide, J. Appl. Phys. 120 (2016) 104503. doi:10.1063/1.4962318.

M. Park, Y.J. Park, X. Chen, Y.K. Park, M.S. Kim, J.H. Ahn, MoS2-Based Tactile Sensor for Electronic Skin Applications, Adv. Mater. 28 (2016) 2556–2562. doi:10.1002/adma.201505124.

S. Wang, M. Pacios, H. Bhaskaran, J.H. Warner, Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition., Nanotechnology. 27 (2016) 085604. doi:10.1088/0957-4484/27/8/085604.

N. Choudhary, J. Park, J.Y. Hwang, W. Choi, Growth of Large-Scale and Thickness-Modulated MoS2 Nanosheets, ACS Appl. Mater. Interfaces. 6 (2014) 21215–21222. doi:10.1021/am506198b.

G. Plechinger, J. Mann, E. Preciado, D. Barroso, a. Nguyen, J. Eroms, C. Schüller, L. Bartels, T. Korn, A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy, Phys. Rev. Lett. 064008 (2013) 1–7. doi:10.1088/0268-1242/29/6/064008.

C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2, ACS Nano. 4 (2010) 2695–2700. doi:10.1021/nn1003937.

H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering, Adv. Funct. Mater. 22 (2012) 1385–1390. doi:10.1002/adfm.201102111.

R. Coehoorn, C. Haas, R.A. de Groot, Electronic structure of MoSe2, MoS2, and WSe2 . The nature of the optical band gaps, Phys. Rev. B. 35 (1987) 6203–6206. doi:10.1103/PhysRevB.35.6203.

G.L. Frey, R. Tenne, M.J. Matthews, M.S. Dresselhaus, G. Dresselhaus, Raman and resonance Raman investigation of MoS2 nanoparticles, Phys. Rev. B. 60 (1999) 2883–2892. doi:10.1103/PhysRevB.60.2883.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging Photoluminescence in Monolayer MoS2, Nano Lett. 10 (2010) 1271–1275. doi:10.1021/nl903868w.

B.C. Windom, W.G. Sawyer, D.W. Hahn, A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems, Tribol. Lett. 42 (2011) 301–310. doi:10.1007/s11249-011-9774-x.

D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors, ACS Nano. 7 (2013) 4879–4891. doi:10.1021/nn400026u.

C. Lunceford, E. Borcean, J. Drucker, Uniform and Repeatable Cold-Wall Chemical Vapor Deposition Synthesis of Single-Layer MoS2, Cryst. Growth Des. 16 (2016) 988–995. doi:10.1021/acs.cgd.5b01540.

S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition, Chem. Mater. 26 (2014) 6371–6379. doi:10.1021/cm5025662.

K. Kalantar-zadeh, Ion-Driven Photoluminescence Modulation of Quasi-Two- Dimensional MoS2 Nano flakes for Applications in Biological Systems, Nano Lett. 14 (2014) 857–863. doi:10.1021/nl4042356.

H. Dong, S. Tang, Y. Hao, H. Yu, W. Dai, G. Zhao, Y. Cao, H. Lu, X. Zhang, H. Ju, Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy, ACS Appl. Mater. Interfaces. 8 (2016) 3107–3114. doi:10.1021/acsami.5b10459.




How to Cite

Anh Vuong, V., & Manh Hung, C. (2018). Direct Synthesis of Multi-layer MoS\(_2\) Nanodots by Chemical Vapor Deposition. Communications in Physics, 28(4), 379.