Coping with noise in joint remote preparation of a general two-qubit state by using nonmaximally entangled quantum channel

Dat Thanh Le, Hop Van Nguyen, An Ba Nguyen
Author affiliations

Authors

  • Dat Thanh Le Thang Long Institute of Mathematics and Applied Sciences,Hanoi
  • Hop Van Nguyen Hanoi National University of Education, Hanoi
  • An Ba Nguyen

DOI:

https://doi.org/10.15625/0868-3166/28/1/11722

Keywords:

joint remote state preparation, two-qubit state, noise

Abstract

Noise is unavoidable in practice and its presence makes quantum protocols imperfect. In this paper we consider a way to cope with typical types of noise in joint remote preparation of an arbitrary 2-qubit state. The idea is to use nonmaximally (in stead of maximally) entangled states as the initial quantum channel. Because noise changes the initial quantum channel we can beforehand tailor it to be nonmaximally entangled by introducing free parameters which, depending on given types of noise, can be controlled so that due to the affect of noise the initial quantum channel becomes closest to the maximally entangled one, thus optimizing the performance of the joint remote state preparation protocol. The dependence of the optimal averaged fidelities on the strength of various types of noise is represented by phase diagrams that clearly separate the quantum domain from the classical one.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

bibitem{i1} Y. Xia, J. Song and H. S. Song, textit{J. Phys. B: At. Mol. Opt. Phys.} textbf{40} (2007) 3719. DOI: https://doi.org/10.1088/0953-4075/40/18/011

bibitem{i2} N. B. An and J. Kim, textit{J. Phys. B: At. Mol. Opt.

Phys.} textbf{41} (2008) 095501. DOI: https://doi.org/10.1088/0953-4075/41/9/095501

bibitem{i3} N. B. An and J. Kim, textit{Int. J. Quant. Inf.} textbf{6}

(2008) 1051.

bibitem{i4} A. K. Pati, textit{Phys. Rev. A} textbf{63} (2000) 014302.

bibitem{i5} N. B. An, textit{J. Phys. B: At. Mol. Opt. Phys.} textbf{%

} (2009) 125501.

bibitem{i6} K. Hou, J. Wang, Y. L. Lu and S. H. Shi, textit{Int. J. Theor.

Phys.} textbf{ 48} (2009) 2005.

bibitem{i7} M. X. Lou, X. B. Chen, S. Y. Ma, X. X. Niu and Y. X. Yang,

textit{Opt. Commun.} textbf{ 283} (2010) 4796.

bibitem{i8} Q. Q. Chen, Y. Xia, J. Song and N. B. An, textit{Phys. Lett. A}

textbf{374} (2010) 4483. DOI: https://doi.org/10.1016/j.physleta.2010.09.013

bibitem{i9} N. B. An, textit{Opt. Commun.} textbf{283} (2010) 4113.

bibitem{i10} N. B. An, C. T. Bich and N. V. Don, textit{Phys. Lett. A}

textbf{375} (2011) 3570. DOI: https://doi.org/10.1016/j.physleta.2011.08.045

bibitem{i11} N. B. An, C. T. Bich and N. V. Don, textit{J. Phys. B: At.

Mol. Opt. Phys.} textbf{44} (2011) 135506. DOI: https://doi.org/10.1088/0953-4075/44/13/135506

bibitem{i12} Q. Q. Chen, Y. Xia and N. B. An, textit{Opt. Commun.} textbf{%

} (2011) 2617.

bibitem{i13} Z. Y. Wang, textit{Int. J. Quant. Inf.} textbf{9} (2011) 809.

bibitem{i14} K. Hou, Y. B. Li, G. H. Liu and S. Q. Sheng, textit{J. Phys.

A: Math. Theor.} textbf{44} (2011) 255304. DOI: https://doi.org/10.1088/1751-8113/44/25/255304

bibitem{i15} X. Q. Xiao, J. M. Liu and G. Zeng, textit{J. Phys. B: At.

Mol. Opt. Phys.} textbf{44} (2011) 075501. DOI: https://doi.org/10.1088/0953-4075/44/7/075501

bibitem{i16} C. T. Bich, N. V. Don and N. B. An, textit{Int. J. Theor.

Phys.} textbf{51} (2012) 2272. DOI: https://doi.org/10.1007/s10773-012-1107-9

bibitem{i16a} Y. Xia, Q. Q. Chen and N. B. An, textit{J. Phys. A: Math. Theor.} textbf{45} (2012) 335306. DOI: https://doi.org/10.1088/1751-8113/45/33/335306

bibitem{i17} M. X. Luo, J. Y. Peng and Z. W. Mo, textit{Int. J. Theor.

Phys.} textbf{52} (2013) 644.

bibitem{i18} Y. B. Zhan and P. C. Ma, textit{Quant. Inf. Process.} textbf{%

} (2013) 997.

bibitem{i19} Y. B. Zhan, H. Fu, X. W. Li and P. C. Ma, textit{Int. J.

Theor. Phys.} textbf{52} (2013) 2615. DOI: https://doi.org/10.1007/s10773-013-1549-8

bibitem{i20} L. R. Long, P. Zhou, Z. Li and C. L. Yin, textit{Int. J.

Theor. Phys.} textbf{51} (2012) 2438. DOI: https://doi.org/10.1007/s10773-012-1124-8

bibitem{i21} D. Wang and L. Ye, textit{Int. J. Theor. Phys.} textbf{51}

(2012) 3376.

bibitem{i22} Y. M. Liao, P. Zhou, X. C. Qin and Y. H. He, textit{Quant.

Inf. Process.} textbf{13} (2014) 615. DOI: https://doi.org/10.1007/s11128-013-0677-7

bibitem{i23} M. X. Luo, X. B. Chen, Y. X. Yang and X. X. Niu, textit{%

Quant. Inf. Process.} textbf{ 11} (2012) 751. DOI: https://doi.org/10.1007/s11128-011-0283-5

bibitem{i24} R. F. Yu, Y. J. Lin and P. Zhou, textit{Quant. Inf. Process.}

textbf{15} (2016) 4785.

bibitem{esd} T. Yu and J. H. Eberly, textit{Phys. Rev. Lett.}

textbf{93} (2004) 140404; textit{Phys. Rev. Lett.} textbf{97} (2006)

bibitem{esd1} N. B. An and J. Kim, textit{Phys. Rev. A} textbf{79} (2009)

bibitem{i25} C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

Smolin and W. K. Wooters, textit{Phys. Rev. Lett.} textbf{76} (1996) 722. DOI: https://doi.org/10.1103/PhysRevLett.76.722

bibitem{i26} J. W. Pan, C. Simon, C. Brukner and A. Zeilinger, textit{%

Nature} textbf{410} (2001) 1067. DOI: https://doi.org/10.1038/35074041

bibitem{i27} J. L. Romero, L. Roa, J. C. Retamal and C. Saavedra, textit{%

Phys. Rev. A} textbf{65} (2002) 052319.

bibitem{i29} Q. Sun, M. Al-Amri and M. S. Zubairy, textit{Phys. Rev. A}

textbf{80} (2009) 033838.

bibitem{i30} J. C. Lee, Y. C. Jeong, Y. S. Kim and Y. H. Kim, textit{Opt.

Express} textbf{19} (2011) 16309. DOI: https://doi.org/10.1364/OE.19.016309

bibitem{i31} M. Hamada, textit{Phys. Rev. A} textbf{68} (2003) 012301.

bibitem{i32} T. Pramanik and A. S. Majumdar, textit{Phys. Lett. A} textbf{%

} (2013) 3209.

bibitem{i33} L. Qiu, G. Tang, X. Yang and A. Wang, textit{Ann. Phys.}

textbf{350} (2014) 137.

bibitem{i34} B. G. Taketani, F. de Melo and R. L. de Matos Filho, textit{%

Phys. Rev. A} textbf{85} (2012) 020301.

bibitem{i35} L. T. Knoll, Ch. T. Schmiegelow and M. A. Larotonda, textit{%

Phys. Rev. A} textbf{90} (2014) 042332.

bibitem{i36} P. Badziag, M. Horodecki, P. Horodecki and R. Horodecki,

textit{Phys. Rev. A} textbf{62} (2000) 012311.

bibitem{i37} S. Bandyopadhyay, textit{Phys. Rev. A} textbf{65} (2002) DOI: https://doi.org/10.1103/PhysRevA.65.042306

bibitem{i38} Y. Yeo, textit{Phys. Rev. A} textbf{78} (2008) 022334.

bibitem{i39} R. Fortes and G. Rigolin, textit{Phys. Rev. A} textbf{92}

(2015) 012338.

bibitem{i40} H. Q. Liang, J. M. Liu, S. S. Feng, J. G. Chen and X. Y. Xu,

textit{Quant. Inf. Process.} textbf{14} (2015) 3857. DOI: https://doi.org/10.1007/s11128-015-1078-x

bibitem{i41} Z. F. Chen, J. M. Liu and L. Ma, textit{Chin. Phys. B}

textbf{23} (2014) 020312. DOI: https://doi.org/10.1088/1674-1056/23/2/020312

bibitem{i42} X. W. Guan, X. B. Chen, L. C. Wang and Y. X. Yang, textit{%

Int. J. Theor. Phys.} textbf{53} (2014) 2236. DOI: https://doi.org/10.1007/s10773-014-2024-x

bibitem{i43} M. M. Wang and Z. G. Qu, textit{Quant. Inf. Process.} textbf{%

} (2016) 4805.

bibitem{i44} H. Zhao and L. Huang, textit{Int. J. Theor. Phys.} textbf{56}

(2017) 720.

bibitem{i45} N. V. Hop, C. T. Bich and N. B. An, textit{Adv. Nat. Sci.:

Nanosci. Nanotech.} textbf{8} (2017) 015012. DOI: https://doi.org/10.1088/2043-6254/aa5980

bibitem{i46} K. Kraus, textit{States, Effects and Operators: Fundamental

Notions of Quantum Theory}, Springer-Verlag, Berlin, 1983.

bibitem{i47} M. A. Nielsen and I. L. Chuang, textit{Quantum Computation

and Quantum Information}, Cambridge University Press, Cambridge, 2000.

bibitem{i48} K. Zyczkowski and H. J. Sommers, textit{J. Phys. A: Math.

Gen.} textbf{34} (2001) 7111. DOI: https://doi.org/10.1088/0305-4470/34/35/335

bibitem{i49} D. Bruss and C. Macchiavello, textit{Phys. Lett. A} textbf{%

} (1999) 249.

Downloads

Published

17-07-2018

How to Cite

[1]
D. T. Le, H. V. Nguyen, and A. B. Nguyen, “Coping with noise in joint remote preparation of a general two-qubit state by using nonmaximally entangled quantum channel”, Comm. Phys., vol. 28, no. 1, p. 1, Jul. 2018.

Issue

Section

Invited Papers
Received 10-03-2018
Accepted 19-03-2018
Published 17-07-2018