Localized Surface Plasmon Resonances with Spherical Metallic Nanoparticles

Minh Quang Ngo
Author affiliations

Authors

  • Minh Quang Ngo 1) Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam 2) Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/28/2/11037

Keywords:

plasmonic, localized surface plasmon resonance (LSPR), dipole moment.

Abstract

In this work we review in part of our recent theoretical study on the electrical intensity enhancement in the dielectric medium surrounding metallic nanoparticles due to the effect of their localized surface plasmon resonance (LSPR). The known results in the case of a simple metallic spherical nanoparticle are presented and then extend them to the general case of complex network of the identical spherical metallic nanoparticles. For illustration, several typical lattices of identical spherical metallic nanoparticles will be treated. The findings of electrical intensity enhancements and plasmonic resonance wavelengths of the single and the network of the metallic nanoparticles are obtained based on the analytical expressions. The theoretical results were compared and shown the good agreement with simulation results. The simulation of the LSPRs and the electrical intensity enhancements was performed using the boundary element method.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

G. Mie, Ann. Phys. 25 (1908) 377. DOI: https://doi.org/10.1002/andp.19083300302

K. M. Mayer and J. H. Hafner, Chem. Rev. 111 (2011) 3828. DOI: https://doi.org/10.1021/cr100313v

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S.B. Cronin, Nano Lett. 11 (2011) 1111. DOI: https://doi.org/10.1021/nl104005n

H. Wang, T. You, W. Shi, J. Li and L. Guo, J. Phys. Chem. C 116 (2012) 6490. DOI: https://doi.org/10.1021/jp212303q

Z. Skeete, H.-W. Cheng, J. Li, C. Salazar, W. Sun, Q.M. Ngo, L. Lin, J. Luo, and C.-J. Zhong, J. Phys. Chem. C

(29) (2017) 15767. DOI: https://doi.org/10.5465/AMBPP.2017.15767symposium

Z. Skeete, H.W. Cheng, Q.M. Ngo, C. Salazar, W. Sun, J. Luo, and C.J. Zhong, Nanotechnol. 27 (2016) 325706. DOI: https://doi.org/10.1088/0957-4484/27/32/325706

H. W. Cheng, S. I. Lim, W. Fang, H. Yan, Z. Skeete, Q.M. Ngo, J. Luo, and C. J. Zhong, J. Phys. Chem. C 119

(2015) 27786.

J. Li, Z. Skeete, S. Shan, S. Yan, K. Kurzatkowska, W. Zhao, Q.M. Ngo, J. Luo, and C.J. Zhong, Anal. Chem. 87

(2015) 10698.

H.W. Cheng, Z. Skeete, Q. M. Ngo, J. Luo, and C. J. Zhong, J. Phys. Chem. C 17 (2015) 28529. DOI: https://doi.org/10.1039/C5CP04920B

B. H. Nguyen and Q. M. Ngo, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 (2014) 025010. DOI: https://doi.org/10.1088/2043-6262/5/2/025010

U. Hohenester, Comput. Phys. Commun. 185 (2014) 1177. DOI: https://doi.org/10.1016/j.cpc.2013.12.010

U. Hohenester and A. Tr¨ugler, Comput. Phys. Commun. 183 (2012) 370. DOI: https://doi.org/10.1016/j.cpc.2011.09.009

S. A. Maier, Plasmonics: Fundamentals and Applications (New York: Springer, 2007). DOI: https://doi.org/10.1007/0-387-37825-1

J. Jackson, Classical Electrodynamics (New York: Wiley, 1999) chapter 9.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6 (1972) 4370. DOI: https://doi.org/10.1103/PhysRevB.6.4370

Downloads

Published

17-07-2018

How to Cite

[1]
M. Q. Ngo, Localized Surface Plasmon Resonances with Spherical Metallic Nanoparticles, Comm. Phys. 28 (2018) 115. DOI: https://doi.org/10.15625/0868-3166/28/2/11037.

Issue

Section

Papers
Received 02-01-2018
Accepted 07-05-2018
Published 17-07-2018