Evolution of Boron Nitride Structure upon Heating
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/4/10752Keywords:
Melting of hexagonal boron nitride nanoribbon, Melting criterion, phase transition, cluster.Abstract
The evolution of structure upon heating of hexagonal boron nitride nanoribbon (h-BNNR) model is studied via molecular dynamics simulation. The temperature is increased from 50K to 5500K in order to observe the change of the structure during heating process. Various thermodynamic quantities related to the change of structure are calculated such as radial distribution functions, Lindemann criterion, the occurrence/growth of liquidlike atoms, the formation of clusters, and ring statistics. The melting point is defined. The phase transition from solid to liquid states exhibits first order behavior.Downloads
Metrics
References
D. Jin-Xiang, Z. Xiao-Kang, Y. Qian, W. Xu-Yang, C. Guang-Hua, and H. De-Yan, Chinese Phys. B 18 (2009) 4013. DOI: https://doi.org/10.1088/1674-1056/18/9/066
C. Li, Y. Bando, C. Zhi, Y. Huang, and D. Golberg, Nanotechnology 20 (2009) 385707. DOI: https://doi.org/10.1088/0957-4484/20/38/385707
K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 54 (1996) 17954. DOI: https://doi.org/10.1103/PhysRevB.54.17954
K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438 (2005) 197. DOI: https://doi.org/10.1038/nature04233
Y.-W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97 (2006) 216803. DOI: https://doi.org/10.1103/PhysRevLett.97.216803
Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim, Phys. Rev. Lett. 96 (2006) 136806. DOI: https://doi.org/10.1103/PhysRevLett.96.136806
A.K. Geim and K.S. Novoselov, Nature materials 6 (2007) 183. DOI: https://doi.org/10.1038/nmat1849
M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98 (2007) 206805. DOI: https://doi.org/10.1103/PhysRevLett.98.206805
I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 3 (2008) 654. DOI: https://doi.org/10.1038/nnano.2008.268
W.L. Wang, S. Meng, and E. Kaxiras, Nano Lett. 8 (2008) 241. DOI: https://doi.org/10.1021/nl072548a
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 5 (2010) 722. DOI: https://doi.org/10.1038/nnano.2010.172
B. Sanyal, O. Eriksson, U. Jansson, and H. Grennberg, Phys. Rev. B 79 (2009) 113409. DOI: https://doi.org/10.1103/PhysRevB.79.113409
C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102 (2009) 195505. DOI: https://doi.org/10.1103/PhysRevLett.102.195505
G. Slotman and A. Fasolino, J. Phys.: Cond. Mat. 25 (2012) 045009. DOI: https://doi.org/10.1088/0953-8984/25/4/045009
H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10 (2010) 5049. DOI: https://doi.org/10.1021/nl103251m
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS nano 4 (2010) 2979. DOI: https://doi.org/10.1021/nn1006495
M.S. Bresnehan, M.J. Hollander, M. Wetherington, M. LaBella, K.A. Trumbull, R. Cavalero, D.W. Snyder, and J.A. Robinson, ACS nano 6 (2012) 5234. DOI: https://doi.org/10.1021/nn300996t
Z. Yu, M. Hu, C. Zhang, C. He, L. Sun, and J. Zhong, J. Phys. Chem. C 115 (2011) 10836. DOI: https://doi.org/10.1021/jp200870t
D.-H. Kim, H.-S. Kim, M.W. Song, S. Lee, and S.Y. Lee, Nano Convergence 4 (2017) 13. DOI: https://doi.org/10.1186/s40580-017-0107-0
K. Albe, W. Möller, and K.-H. Heinig, Radiat. Ef. Defect. S. 141 (1997) 85. DOI: https://doi.org/10.1080/10420159708211560
D.W. Brenner, Phys. Rev. B 42 (1990) 9458. DOI: https://doi.org/10.1103/PhysRevB.42.9458
S. Plimpton, J. Comput. Phys. 117 (1995) 1. DOI: https://doi.org/10.1006/jcph.1995.1039
S. Le Roux and V. Petkov, J. Appl. Crystallogr. 43 (2010) 181. DOI: https://doi.org/10.1107/S0021889809051929
W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1996) 33. DOI: https://doi.org/10.1016/0263-7855(96)00018-5
K. Zakharchenko, A. Fasolino, J. Los, and M. Katsnelson, J. Phys.: Cond. Mat. 23 (2011) 202202. DOI: https://doi.org/10.1088/0953-8984/23/20/202202
N.H. March and M.P. Tosi, Introduction to liquid state physics (2002) World Scientific. DOI: https://doi.org/10.1142/4717
S. Gleiman, C.-K. Chen, A. Datye, and J. Phillips, Journal of materials science 37 (2002) 3429. DOI: https://doi.org/10.1023/A:1016502804363
N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17 (1966) 1133. DOI: https://doi.org/10.1103/PhysRevLett.17.1133
N.D. Mermin, Phys. Rev. 176 (1968) 250. DOI: https://doi.org/10.1103/PhysRev.176.250
L.D. Landau and E.M. Lifshitz, Course of theoretical physics, Vol. 5 (2013) Elsevier.
V. Bedanov, G. Gadiyak, and Y.E. Lozovik, Phys. Lett. A 109 (1985) 289. DOI: https://doi.org/10.1016/0375-9601(85)90617-6
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 26-11-2017
Published 15-12-2017