Evolution of Boron Nitride Structure upon Heating

Nguyen Thi Thuy Hang
Author affiliations

Authors

  • Nguyen Thi Thuy Hang HCMC University Of Technology, 268 Ly Thuong Kiet Street, ward 14, District 10, Hochiminh City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/27/4/10752

Keywords:

Melting of hexagonal boron nitride nanoribbon, Melting criterion, phase transition, cluster.

Abstract

The evolution of structure upon heating of hexagonal boron nitride nanoribbon (h-BNNR) model is studied via molecular dynamics simulation. The temperature is increased from 50K to 5500K in order to observe the change of the structure during heating process. Various thermodynamic quantities related to the change of structure are calculated such as radial distribution functions, Lindemann criterion, the occurrence/growth of liquidlike atoms, the formation of clusters, and ring statistics. The melting point is defined. The phase transition from solid to liquid states exhibits first order behavior.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D. Jin-Xiang, Z. Xiao-Kang, Y. Qian, W. Xu-Yang, C. Guang-Hua, and H. De-Yan, Chinese Phys. B 18 (2009) 4013. DOI: https://doi.org/10.1088/1674-1056/18/9/066

C. Li, Y. Bando, C. Zhi, Y. Huang, and D. Golberg, Nanotechnology 20 (2009) 385707. DOI: https://doi.org/10.1088/0957-4484/20/38/385707

K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 54 (1996) 17954. DOI: https://doi.org/10.1103/PhysRevB.54.17954

K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438 (2005) 197. DOI: https://doi.org/10.1038/nature04233

Y.-W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97 (2006) 216803. DOI: https://doi.org/10.1103/PhysRevLett.97.216803

Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim, Phys. Rev. Lett. 96 (2006) 136806. DOI: https://doi.org/10.1103/PhysRevLett.96.136806

A.K. Geim and K.S. Novoselov, Nature materials 6 (2007) 183. DOI: https://doi.org/10.1038/nmat1849

M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98 (2007) 206805. DOI: https://doi.org/10.1103/PhysRevLett.98.206805

I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 3 (2008) 654. DOI: https://doi.org/10.1038/nnano.2008.268

W.L. Wang, S. Meng, and E. Kaxiras, Nano Lett. 8 (2008) 241. DOI: https://doi.org/10.1021/nl072548a

C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 5 (2010) 722. DOI: https://doi.org/10.1038/nnano.2010.172

B. Sanyal, O. Eriksson, U. Jansson, and H. Grennberg, Phys. Rev. B 79 (2009) 113409. DOI: https://doi.org/10.1103/PhysRevB.79.113409

C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102 (2009) 195505. DOI: https://doi.org/10.1103/PhysRevLett.102.195505

G. Slotman and A. Fasolino, J. Phys.: Cond. Mat. 25 (2012) 045009. DOI: https://doi.org/10.1088/0953-8984/25/4/045009

H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10 (2010) 5049. DOI: https://doi.org/10.1021/nl103251m

D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS nano 4 (2010) 2979. DOI: https://doi.org/10.1021/nn1006495

M.S. Bresnehan, M.J. Hollander, M. Wetherington, M. LaBella, K.A. Trumbull, R. Cavalero, D.W. Snyder, and J.A. Robinson, ACS nano 6 (2012) 5234. DOI: https://doi.org/10.1021/nn300996t

Z. Yu, M. Hu, C. Zhang, C. He, L. Sun, and J. Zhong, J. Phys. Chem. C 115 (2011) 10836. DOI: https://doi.org/10.1021/jp200870t

D.-H. Kim, H.-S. Kim, M.W. Song, S. Lee, and S.Y. Lee, Nano Convergence 4 (2017) 13. DOI: https://doi.org/10.1186/s40580-017-0107-0

K. Albe, W. Möller, and K.-H. Heinig, Radiat. Ef. Defect. S. 141 (1997) 85. DOI: https://doi.org/10.1080/10420159708211560

D.W. Brenner, Phys. Rev. B 42 (1990) 9458. DOI: https://doi.org/10.1103/PhysRevB.42.9458

S. Plimpton, J. Comput. Phys. 117 (1995) 1. DOI: https://doi.org/10.1006/jcph.1995.1039

S. Le Roux and V. Petkov, J. Appl. Crystallogr. 43 (2010) 181. DOI: https://doi.org/10.1107/S0021889809051929

W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1996) 33. DOI: https://doi.org/10.1016/0263-7855(96)00018-5

K. Zakharchenko, A. Fasolino, J. Los, and M. Katsnelson, J. Phys.: Cond. Mat. 23 (2011) 202202. DOI: https://doi.org/10.1088/0953-8984/23/20/202202

N.H. March and M.P. Tosi, Introduction to liquid state physics (2002) World Scientific. DOI: https://doi.org/10.1142/4717

S. Gleiman, C.-K. Chen, A. Datye, and J. Phillips, Journal of materials science 37 (2002) 3429. DOI: https://doi.org/10.1023/A:1016502804363

N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17 (1966) 1133. DOI: https://doi.org/10.1103/PhysRevLett.17.1133

N.D. Mermin, Phys. Rev. 176 (1968) 250. DOI: https://doi.org/10.1103/PhysRev.176.250

L.D. Landau and E.M. Lifshitz, Course of theoretical physics, Vol. 5 (2013) Elsevier.

V. Bedanov, G. Gadiyak, and Y.E. Lozovik, Phys. Lett. A 109 (1985) 289. DOI: https://doi.org/10.1016/0375-9601(85)90617-6

Downloads

Published

15-12-2017

How to Cite

[1]
N. T. T. Hang, “Evolution of Boron Nitride Structure upon Heating”, Comm. Phys., vol. 27, no. 4, p. 301, Dec. 2017.

Issue

Section

Papers
Received 23-09-2017
Accepted 26-11-2017
Published 15-12-2017