Relaxation Rate and Mobility of a Two-dimensional Electron Gas in MgZnO/ZnO Heterostructures Including Exchange and Correlation Effects
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/3/10611Keywords:
ZnO, Heterostructure, Scattering mechanism, Correlation effectAbstract
We investigate the relaxation rate and mobility of a two-dimensional electron gas (2DEG) confined in MgZnO/ZnO heterostructures (HSs) for temperatures , taking into account exchange and correlation effects. We use the variational-subband-wave-function model for carrier confinement and assume that the electrons are confined to the lowest subband and scattered by acoustic phonons via deformation potential (DP) and piezoelectric (PE) fields, polar LO phonons, interface roughness (IRS), interface charges (IFCs) and the background impurities (BIs). The calculations are based on the linearized Boltzmann equation (BE) and the relaxation time approximation, assuming the scattering by acoustic phonons to be quasi-elastic. We consider three physically distinct temperature ranges with respect to phonon scattering: the Bloch-Grüneisen (BG), equipartition (EP), and inelastic regimes. In the inelastic regime at high temperatures, where the scattering from polar LO phonons becomes important, we solve directly the linearized BE by an iterative method and compare the obtained results with those of the low-temperature and high-energy relaxation-time approximation. Our calculated low-temperature mobility is in good agreement with the recent experiment.Downloads
Metrics
References
A. Ohtomo et al., Appl. Phys. Lett, 72 (1998) 2466. DOI: https://doi.org/10.1063/1.121384
T. Aoki et al., Appl. Phys. Lett, 76 (2000) 3257. DOI: https://doi.org/10.1063/1.126599
U. K. Mishra et al., Proc. IEEE, 90 (2002), 1022. DOI: https://doi.org/10.1109/JPROC.2002.1021567
K. Koike, Jpn. J. Appl. Phys. 43 (2004) L1372. DOI: https://doi.org/10.1143/JJAP.43.5550
S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665. DOI: https://doi.org/10.1063/1.102730
K. Tsubaki et al., Appl. Phys. Lett. 80 (2002) 3126. DOI: https://doi.org/10.1063/1.1474599
K. Ellmer, J. Phys. D: Appl. Phys. 34 (2001) 3097. DOI: https://doi.org/10.1088/0022-3727/34/21/301
D. C. Look, Semicond. Sci. Technol. 20 (2005) S55. DOI: https://doi.org/10.1088/0268-1242/20/4/007
A. Gold, Appl. Phys. Lett. 96 (2010) 242111. DOI: https://doi.org/10.1063/1.3455881
A. Gold, J. Appl. Phys. 110 (2011) 043702. DOI: https://doi.org/10.1063/1.3622310
M. Nakano et al., Adv. Mater. 22 (2010) 876. DOI: https://doi.org/10.1002/adma.200902162
M. A. Tsukazaki et al., Nature Mater. 9 (2010) 889. DOI: https://doi.org/10.1038/nmat2874
M. Tsaousidou, Phys. Status Solidi RRL 7 (2013) 544. DOI: https://doi.org/10.1002/pssr.201350514
T. Kawamura, S. Das Sarma, Phys. Rev. B 45 (1992) 3612. DOI: https://doi.org/10.1103/PhysRevB.45.3612
K. Rizwana Begum et al., 2013 AIP Conference Proceedings, Volume 1536, Issue 1, p.447.
J. Falson et al., Appl. Phys. Express 4 (2011) 091101. DOI: https://doi.org/10.1143/APEX.4.091101
Li Q. et al., Appl. Phys. Express 6, 121102 (2013). DOI: https://doi.org/10.7567/APEX.6.121102
Vo Van Tai, Nguyen Quoc Khanh, Physica E 67 (2015) 84. DOI: https://doi.org/10.1016/j.physe.2014.11.015
A. Gold, Z. Phys. B 103 (1997) 491. DOI: https://doi.org/10.1007/s002570050404
A. Gold, Phys. Rev. B 35 (1987) 723. DOI: https://doi.org/10.1103/PhysRevB.35.723
Chihiro Hamaguchi, Basic Semiconductor Physics, Springer, Berlin Heidelberg, 2001. DOI: https://doi.org/10.1007/978-3-662-04656-2
A. Gold, Semicond. Sci. Technol. 26 (2011) 045017. DOI: https://doi.org/10.1088/0268-1242/26/4/045017
A. Gold, Appl. Phys. Lett. 54 (1989) 2100. DOI: https://doi.org/10.1063/1.101176
S. J. MacLeod et al., Phys. Rev. B 80 (2009) 035310. DOI: https://doi.org/10.1103/PhysRevB.80.035310
M. D. Kamatagi, et a., Phys. Rev. B 71 (2005) 125334. DOI: https://doi.org/10.1103/PhysRevB.71.125334
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 10-11-2017
Published 18-11-2017