GEOCHEMISTRY AND PETROGENESIS OF VOLCANIC ROCKS AND THEIR MANTLE SOURCE IN THE EAST VIETNAM SEA AND ADJACENT REGIONS IN THE CENOZOIC

Le Duc Anh, Nguyen Hoang, Phung Van Phach, Malinovskii A. I., Kasatkin S. A., Golozubov V. V.
Author affiliations

Authors

  • Le Duc Anh Institute of Marine Geology and Geophysics, VAST Graduate University of Science and Technology, VAST
  • Nguyen Hoang Institute of Geological Sciences, VAST
  • Phung Van Phach Institute of Marine Geology and Geophysics, VAST
  • Malinovskii A. I. Russian Academy of Sciences
  • Kasatkin S. A. Russian Academy of Sciences
  • Golozubov V. V. Russian Academy of Sciences

DOI:

https://doi.org/10.15625/1859-3097/17/4/9258

Keywords:

East Vietnam Sea, Miocene - Pleistocene basalt, crustal contamination.

Abstract

The East Vietnam Sea is one of the largest marginal basins in western Pacific Ocenan, formed by breaking of continental margin in the Late Mesozoic. Geochemical data of the Miocene - Pleistocene bazanic samples collected in the East Sea and neighboring areas show two major eruption trends that reflect the formation and development of the region. The early eruption event is characterized by low alkaline, TiO2, Na2O, K2O and P2O5, and high SiO2 group, comprising olivine and tholeiitic bazans. The later eruption demonstrates high alkaline, TiO2, Na2O, K2O and P2O5, and low SiO2 group, mainly generated by central-type volcanic eruptions, consisting of alkaline olivine and olivine bazans. Distinctive geochemistry of the volcanic rocks within the East Vietnam Sea and adjacent areas is illustrated by wide range of Magnesium index (Mg#= 35-75). At the values of Mg#>65, the relation between Mg# and major oxides is unclear. In contrast, Mg#<65 show relatively clear relations with major oxides (SiO2, Al2O3, K2O) and trace elements such as Ni, Cr. Crustal contamination can be identified by the correlation between 87Sr/86Sr, 143Nd/ 144Nd and Mg#. At Mg#>65 (Olivine differentiation) the isotope ratios start changing. The primitive components are computed based on the principle of olivine compensation. The computed results show that the critical pressure for Tholeiite melting was estimated from ~11.97-20.33 Kb (ca. 30 - 60 km deep) and the Alkaline melting pressure varies from ~16.87-34.93 Kb (corresponding to the depths of ~60 km to 100 km). The continuous range of melting pressures suggests two trends of tholeiitic and alkaline eruptions occurr at various depths in the same magmatic source. Hight temperature and melting pressure of the primitive magma are dependent on partial melting pressure. Possibly, this process was triggered by the asthenosphere intrusion resulted from the closure of the Neo-Tethys following the India - Eurasia collision. This event has not only made the mantle hotter and easily melted but also triggered the opening of the marginal seas, including the East Vietnam Sea.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Metcalfe, I., 1997. The Paleo-Tethys and Paleozoic-Mesozoic tectonic evolution of Southeast Asia. In Proceedings of the International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. Bangkok, Thailand (pp. 260-272).

Leloup, P. H., Arnaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M., Trong, T. T., Replumaz, A., and Tapponnier, P., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. Journal of Geophysical Research: Solid Earth, 106(B4), 6683-6732.

Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611-616.

Hoang, N., and Flower, M., 1998. Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a ‘diffuse igneous province’. Journal of Petrology, 39(3), 369-395.

Flower, M., Tamaki, K., and Hoang, N., 1998. Mantle extrusion: A model for dispersed volcanism and Dupal‐like asthenosphere in East Asia and the Western Pacific. American Geophysical Union, 27, 67-88.

Barr, S. M., and Macdonald, A. S., 1981. Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia. Geological Society of America Bulletin, 92(8_Part_II), 1069-1142.

Tu, K., Flower, M. F., Carlson, R. W., Xie, G., Chen, C. Y., and Zhang, M., 1992. Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chemical Geology, 97(1-2), 47-63.

Yan, P., Deng, H., Liu, H., Zhang, Z., and Jiang, Y., 2006. The temporal and spatial distribution of volcanism in the South China Sea (East Vietnam Sea) region. Journal of Asian Earth Sciences, 27(5), 647-659.

Nguyễn Hoàng., Phan Trọng Trịnh, 2009. Tổng hợp đặc điểm thạch học và địa hóa đá núi lửa Neogen - Đệ tứ và động lực manti khu vực Biển Đông và các vùng lân cận. Tạp chí Địa chất, A312, 5-6.

Hoang, N., Flower, M. F., and Carlson, R., W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22), 4329-4351.

Hoang, N., Flower, M. F., Xuan, P. T., Quy, H. V., and Son, T. T., 2013. Collision-induced basalt eruptions at Pleiku and Buon Me Thuot, south-central Vietnam. Journal of Geodynamics, 69, 65-83.

Ph. T. Xuân, Ng. Hoàng, 2002. Đặc điểm thạch học và thành phân nguyên tố chính trong bazan Kainozoi muộn tại Việt Nam. Tạp chí Các Khoa học về Trái Đất, 24(1), 33-42.

Yan, Q., Shi, X., Wang, K., Bu, W., and Xiao, L., 2008. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea (East Vietnam Sea). Science in China Series D: Earth Sciences, 51(4), 550-566.

Wang, X. C., Li, Z. X., Li, X. H., Li, J., Liu, Y., Long, W. G., Zhou, J. B., and Wang, F., 2011. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?. Journal of Petrology, 53(1), 177-233.

Koloskov, A. V., Fedorov, P. I., and Rashidov, V. A., 2016. New data on products composition of the Quaternary volcanic activity in the shelf zone of NW margins of the South China Sea (East Vietnam Sea) and the problem of asthenospheric diapirism.

Hoang, N., Shakirov, R. B., and Huong, T. T., 2017. Geochemistry of late miocene-pleistocene basalts in the Phu Quy island area (East Vietnam Sea): Implication for mantle source feature and melt generation. Vietnam Journal of Earth Sciences, 39(3), 270-288.

Hoang, N., Flower, M. F., and Carlson, R., W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22), 4329-4351.

Yan, Q., Shi, X., and Castillo, P. R., 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea (East Vietnam Sea): a petrologic perspective. Journal of Asian Earth Sciences, 85, 178-201.

Li, P., and Liang, H., 1994. Cenozoic magmatism in the Pearl river Mouth basin and its relationship to the basin evolution and petroleum accumulation. Guangdong Geology, 9(2), 23-34.

Flower, M. F., Zhang, M., Chen, C. Y., Tu, K., and Xie, G., 1992. Magmatism in the south China basin: 2. Post-spreading Quaternary basalts from Hainan island, south China. Chemical Geology, 97(1-2), 65-87.

Tu, K., Flower, M. F., Carlson, R. W., Zhang, M., and Xie, G., 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): implications for a subcontinental lithosphere Dupal source. Geology, 19(6), 567-569.

Ho, K. S., Chen, J. C., and Juang, W. S., 2000. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. Journal of Asian Earth Sciences, 18(3), 307-324.

Li, C.F., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Ding, W. W., Hernández-Almeida, I., Huang, X. L., Hyun, S., Jiang, T., Koppers, A. A. P., Li, Q., Liu, C., Liu, Q., Liu, Z., Nagai, R. H., Peleo-Alampay, A., Su, X., Sun, Z., Tejada, M. L. G., Trinh, H. S., Yeh, Y. C., Zhang, C., Zhang, F., Zhang, G. L., and Zhao, X., 2015. Expedition 349 summary. Proceedings of the International Ocean Discovery Program, doi:10.14379/iodp.proc.349.101.2015.

Kudrass, H. R., Wiedicke, M., Cepek, P., Kreuzer, H., and Müller, P., 1986. Mesozoic and Cainozoic rocks dredged from the South China Sea (Reed Bank area) and Sulu Sea and their significance for plate-tectonic reconstructions. Marine and Petroleum Geology, 3(1), 19-30.

An, A. R., Choi, S. H., Yu, Y., and Lee, D. C., 2017. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos, 272, 192-204.

Nguyen Hoang, Masatsugu Ogasawara, Tran Thi Huong, Phan Van Hung, Nguyen Thi Thu, Cu Sy Thang, Pham Thanh Dang, Pham Tich Xuan, 2014. Geochemistry of Neogene bazans in the Nghia Dan district, west-ern Nghe An. Vietnam Journal of Earth Sciences, 36(4), 403-412. DOI: 10.15625/0866-7187/36/4/6428.

Hirose, K., and Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4), 477-489.

Kushiro, I., 1996. Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. Washington DC American Geophysical Union Geophysical Monograph Series, 95, 109-122.

Kushiro, I., 1998. Compositions of partial melts formed in mantle peridotites at high pressures and their relation to those of primitive MORB. Physics of The Earth and Planetary Interiors, 107(1-3), 103-110.

Bas, M. L., Maitre, R. L., Streckeisen, A., Zanettin, B., and IUGS Subcommission on the Systematics of Igneous Rocks, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745-750.

McDonough, W. F., and Sun, S. S., 1995. The composition of the Earth. Chemical Geology, 120(3-4), 223-253.

Nakamura, N., and Masuda, A., 1973. Chondrites with peculiar rare-earth patterns. Earth and Planetary Science Letters, 19(4), 429-437.

Hart, S. R., 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3), 273-296.

Gill, R., 2010. Magma differentiation. In Monograph: Igneous Rocks and Processes: A Practical Guide. Chapter 3, 65-92.

Hékinian, R., Bonte, P., Pautot, G., Jacques, D., Labeyrie, L. D., Mikkelsen, N., and Reyss, J. L., 1989. Volcanics from the South China Sea ridge system. Oceanologica Acta, 12(2), 101-115.

De Hoog, J. C., Gall, L., and Cornell, D. H., 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1), 196-215.

Osborn, E. F., and Tait, D. B., 1952. The system diopside-forsterite-anorthite. Am. J. Sci., 250, 413-433.

Hofmann, A. W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613), 219-229.

Zou, H., and Fan, Q., 2010. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos, 116(1-2), 145-152.

Yamashita, S., Tatsump, Y., and Nohda, S., 1996. Temporal variation in primary magma compositions in the northeast Japan Arc. Island Arc, 5(3), 276-288.

Nguyễn Hoàng, 2005. Đặc điểm nguồn và điều kiện nóng chảy bazan Kainozoi Pleiku. Tạp chí Địa chất, A/286, 15-22.

Tamura, Y., Yuhara, M., and Ishii, T., 2000. Primary arc basalts from Daisen volcano, Japan: equilibrium crystal fractionation versus disequilibrium fractionation during supercooling. Journal of Petrology, 41(3), 431-448.

Leeman, W. P., Lewis, J. F., Evarts, R. C., Conrey, R. M., and Streck, M. J., 2005. Petrologic constraints on the thermal structure of the Cascades arc. Journal of Volcanology and Geothermal Research, 140(1), 67-105.

Putirka, K. D., 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6(5), 1-14.

Roeder, P. L., and Emslie, R., 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29(4), 275-289.

Putirka, K. D., 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1), 61-120.

Herzberg, C., Asimow, P. D., Arndt, N., Niu, Y., Lesher, C. M., Fitton, J. G., Cheadle, M. J., and Saunders, A. D., 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8(2), 1-34.

McKenzie, D., and Bickle, M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3), 625-679.

Langmuir, C. H., Klein, E. M., and Plank, T., 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. Washington DC American Geophysical Union Geophysical Monograph Series, 71, 183-280.

Lee, C. T. A., Luffi, P., Plank, T., Dalton, H., and Leeman, W. P., 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279(1-2), 20-33.

Albarede, F., 1992. How deep do common basaltic magmas form and differentiate?. Journal of Geophysical Research: Solid Earth, 97(B7), 10997-11009.

Haase, K. M., 1996. The relationship between the age of the lithosphere and the composition of oceanic magmas: Constraints on partial melting, mantle sources and the thermal structure of the plates. Earth and Planetary Science Letters, 144(1-2), 75-92.

Putirka, K. D., Perfit, M., Ryerson, F. J., and Jackson, M. G., 2007. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241(3-4), 177-206.

McKenzie, D. A. N., and O’nions, R. K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5), 1021-1091.

Trung, N. N., Lee, S. M., and Que, B. C., 2004. Satellite gravity anomalies and their correlation with the major tectonic features in the South China Sea (East Vietnam Sea). Gondwana Research, 7(2), 407-424.

Kamenetsky, V. S., Chung, S. L., Kamenetsky, M. B., and Kuzmin, D. V., 2012. Picrites from the Emeishan Large Igneous Province, SW China: a compositional continuum in primitive magmas and their respective mantle sources. Journal of Petrology, 53(10), 2095-2113.

Latin, D., and White, N., 1990. Generating melt during lithospheric extension: Pure shear vs. simple shear. Geology, 18(4), 327-331.

Katz, R. F., Spiegelman, M., and Langmuir, C. H., 2003. A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9), 1-19.

Downloads

Published

06-08-2018

How to Cite

Anh, L. D., Hoang, N., Phach, P. V., I., M. A., A., K. S., & V., G. V. (2018). GEOCHEMISTRY AND PETROGENESIS OF VOLCANIC ROCKS AND THEIR MANTLE SOURCE IN THE EAST VIETNAM SEA AND ADJACENT REGIONS IN THE CENOZOIC. Vietnam Journal of Marine Science and Technology, 17(4), 406–426. https://doi.org/10.15625/1859-3097/17/4/9258

Issue

Section

Articles

Most read articles by the same author(s)