Composites of conducting polymers and nanoparticles for thin-film-multilayers OLEDs, OSCs and gas sensors

Nguyen Nang Dinh
Author affiliations

Authors

  • Nguyen Nang Dinh

DOI:

https://doi.org/10.15625/0868-3166/22081

Keywords:

nanocomposites, heterojunction organic light-emitting diodes, organic solar cells, gas sensors

Abstract

In this work is a general view on nanostructured polymeric composite materials used for preparation and characterization of a group of organic optoelectronic devices, such as Organic Light-Emitting Diodes (OLEDs), Solar Cells (OSCs) and Gas Sensors (OGSs). From recent references, this work gives informations on structural, morphological, electrical and optical properties as well as perfomance behaviour of the nanocomposite devies. The analyzed data have demonstrated that nanostructured composite materials consisting of conducting polymers (CP) and nanoparticles have significantly contributed to enhance both the performance parameters and working time of devices. The presence of inorganic nanoparticles in polymers has strongly influenced all physical properties of the polymers. In this work we concentrated to analyze the most interesting properties of the OLEDs, OSCs and OGSs, such as electro-luminescence, photo-electrical conversion, and gas sensing. This review work also shows in general, the discovery source of the CPs, some typical CPs and their composites used for the fabrication of nanocomposite devices which aim at different practical purposes.

Downloads

Metrics

PDF views
4

References

J. S. Salafsky, Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer, TiO2 nanocrystal intermixed composites,

Phys. Rev. B 59 (1999) 10885.

W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Hybrid nanorod, polymer solar cells,

Science 295 (2002) 2425.

T. M. Petrella, M. Tamborra, A. Agostiano, M. Striccoli, G. L. Guerriero, A. Cola et al., TiO2 nanocrystals – MEH-PPV composite thin films as photoactive material,

Thin Solid Films 451–452 (2004) 64.

V. M. Burlakov, K. Kawata, H. E. Assender, G. A. D. Briggs, A. Ruseckas and I. D. W. Samuel, Discrete hopping model of exciton transport in disordered media,

Phys. Rev. B 72 (2005) 075206.

M. Zhang, S. Höfle, J. Czolk, A. Mertens and A. Colsmann, All-solution processed transparent organic light emitting diodes,

Nanoscale 7 (2015) 20009.

I. A. Rashid, M. A. Al-Maadeed, M. A. Wahab, M. A. Al-Maadeed, M. A. Wahab and M. A. Al-Maadeed, Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications,

J. Reinf. Plast. Compos. 41 (2021) 34.

E. Carlos, R. Martins, E. Fortunato and R. Branquinho, Solution combustion synthesis: towards a sustainable approach for metal oxides,

Chem. Eur. J. 26 (2020) 375.

D. Bokov, A. Jalil, M. Chupradit, M. S. Ansari, M. K. Amini and M. K. Amini, Nanomaterial by sol-gel method: synthesis and application,

Adv. Mater. Sci. Eng. 2021 (2021) 5102014.

Y. H. Jang, S. Hwang, S. B. Chang, J. Ku and D. S. Chung, Acid dissociation constants of melamine derivatives from density functional theory calculations,

J. Phys. Chem. A 113 (2009) 13036.

A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker and K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer. CRC Press, Taylor & Francis Group, 2011,

10.1201/b10318.

H. Letheby, On the production of a blue substance by the electrolysis of sulphate of aniline,

J. Chem. Soc. 15 (1862) 161.

F. F. Runge, Poggendorfs ann. phys. u. chemie, Poggendorfs Ann. Phys. u. Chemie 31 (1834) 513.

G. Schiavon, S. Sitran and G. Zotti, A simple two-band electrode for in situ conductivity measurements of polyconjugated conducting polymers,

Synth. Met. 32 (1989) 209.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,

Adv. Mater. 12 (2000) 481.

W. J. Feast, J. Tsibouklis, K. L. Pouwer, L. Groenendaal and E. W. Meijer, Synthesis, processing and material properties of conjugated polymers,

Polymer 37 (1996) 5017.

C. K. Chiang, C. R. F. Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis et al., Electrical conductivity in doped polyacetylene,

Phys. Rev. Lett. 39 (1977) 1098.

H. Shirakawa, Die entdeckung der polyacetylenfilme – der beginn des zeitalters leitfähiger polymere,

Angew. Chem. 113 (2001) 2642.

K. Yamaguchi and T. Tsujioka, Selective metal-vapor deposition on solvent evaporated polymer surfaces,

Thin Solid Films 597 (2015) 220.

S. Ren, E. K. Stefanakos and D. Y. Goswami, Inorganic-organic hybrid solar cell: Bridging quantum dot to conjugated polymer nanowires,

Nano Lett. 11 (2011) 3998.

K. J. Klabunde, Nanoscale Materials in Chemistry. John Wiley & Sons, 2009.

V. Mann and V. Rastogi, Dielectric nanoparticles for the enhancement of OLED light extraction efficiency, Opt. Commun. 387 (2017) 202.

C. Y. Park and B. Choi, Enhanced light extraction from bottom emission OLEDs by high refractive index nanoparticle scattering layer, Nanomaterials 9 (2019) 1241.

N. D. Nguyen, H. C. Le, T. C. T. Tran, Q. T. Tran and V. T. Vo, Enhancement of current-voltage characteristics of multilayer organic light emitting diodes by using nanostructured composite films, J. Appl. Phys. 105 (2009) 093518.

J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu and Y. Yang, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer 45 (2004) 8443.

P. Tehrani, L. A. A. Pettersson and O. Inganäs, The effect of pH on the electrochemical over-oxidation in PEDOT:PSS, Solid State Ionics 177 (2007) 3521.

B. A. Al-Asbahi, Influence of SiO2/TiO2 nanocomposite on the optoelectronic properties of PFO/MEH-PPV-based OLED devices, Polymers 10 (2018) 800.

C. Cuerva, J. A. Campo, M. Cano, B. Arredondo, B. Romero, E. Otón et al., Bis(pyridylpyrazolate)platinum(II): a mechanochromic complex useful as a dopant for colour-tunable polymer OLEDs, New J. Chem. 39 (2015) 8467.

M. Belhaj, C. Dridi and H. Elhouichet, PFE: ZnO hybrid nanocomposites for OLED applications: Fabrication and photophysical properties, J. Lumin. 157 (2015) 53.

C. Borriello, A. Mauro, A. Accardo, M. Barra, A. Cassinese, L. D. Stefano et al., Optoelectronic properties of OLEDs based on CdSe/ZnS quantum dots and F8BT, Phys. Status Solidi C 12 (2015) 1416.

R. B. Choudhry and S. Kumar, Optimum chemical states and localized electronic states of SnO2 integrated PTh-SnO2 nanocomposites as excelling emissive layer (EML), Opt. Mater. 131 (2022) 112736.

H. Kaur, S. Sundriyal, S. K. Mehta, Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays,

Coord. Chem. Rev. 401 (2019) 213077.

Y. Zhou, Y. Wang, Y. Zhang, Y. Wang, Y. Li, Y. Li, Y. Wang, Y. Wang, Effects of PEDOT:PSS:GO composite hole transport layer on the luminescence of perovskite light-emitting diodes,

RSC Adv. 10 (2020) 26381.

R. Sorrentino, A. Minotto, M. Patrini, M. Meneghetti, F. Meinardi, R. Tubino, A. Monguzzi, Hybrid MoS2/PEDOT:PSS transporting layers for interface engineering of nanoplatelet-based light-emitting diodes,

Dalton Trans. 50 (2021) 9208.

G. L. Ong, S. S. Lim, S. S. Lim, S. S. Lim, S. S. Lim, S. S. Lim, S. S. Lim, A brief review of nanoparticles-doped PEDOT:PSS, Nanocomposite for OLED and OPV,

Nanotechnol. Rev. 11 (2022) 1870.

Z. Georgiopoulou, A. K. Andreopoulou, D. Tasis, D. Tasis, D. Tasis, D. Tasis, D. Tasis, Plasmonic enhanced OLED efficiency upon silver-polyoxometalate core-shell nanoparticle integration into the hole injection/transport layer,

Sci. Rep. 14 (2024) 28888.

I. E. Kuznetsov, A. V. Akkuratov, P. A. Troshin, Polymer nanocomposites for solar cells: research trends and perspectives, in Nanomaterials for Solar Cell Applications, Elsevier, 2019, pp. 557–600.

DOI: 10.1016/B978-0-12-813337-8.00015-1.

T. T. Tran, Q. T. Tran, V. T. Vo, N. D. Nguyen, Enhancement of Power Efficiency and Stability of P3HT-Based Organic Solar Cells under Elevated Operating-Temperatures by Using a Nanocomposite Photoactive Layer,

J. Nanomater. (2015), Article ID 463565.

V. T. Nguyen, V. S. Tran, Q. T. Tran, T. T. Tran, N. D. Nguyen, Development of Laser Beam Diffraction Technique for Determination of Thermal Expansion Coefficient of Polymeric Thin Films,

VNU J. Sci. Math. - Phys. 31 (2015) 21.

D. Meneses-Rodríguez, P. P. Horley, J. González-Hernández, Y. V. Vorobiev, P. N. Gorley, Photovoltaic solar cells performance at elevated temperatures,

Sol. Energy 78 (2005) 243.

D. Ouyang, Z. Huang, W. C. H. Choy, Solution-Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells,

Adv. Funct. Mater. 29 (2019) 1.

Zhong Zheng, Shaoqing Zhang, Jianqiu Wang, Jianqi Zhang, Dongyang Zhang, Yuan Zhang, Zhixiang Wei, Zhiyong Tang, Jianhui Hou, Huiqiong Zhou,

Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure,

J. Mater. Chem. A 7 (2019) 3570–3576.

Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-Bin Song, Chuanxiao Duan, Zhiqun Hong, Jingbi You, Yongsheng Liu, Yang Yang,

Interface engineering of highly efficient perovskite solar cells,

Science 345 (2014) 542–546.

U. Kwon, J. H. Yun, S. H. Lee, S. H. Im,

Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells,

Sci. Rep. 6 (2016) 30759.

S. Huang, B. Kang, L. Zhang, L. Liao, D. Zhang,

Enhancing the performance of polymer solar cells using solution-processed copper doped nickel oxide nanoparticles as hole transport layer,

J. Colloid Interface Sci. 535 (2019) 308–314.

L. Feng, X. T. Hao,

Photophysical Behaviors at Interfaces between Poly(3-Hexylthiophene) and Zinc Oxide Nanostructures,

Mater. Trans. 58 (2017) 1106–1111.

X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel,

Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays,

ACS Appl. Mater. Interfaces 8 (2016) 21358–21365.

N. D. Nguyen, H. K. Kim, D. L. Nguyen, D. C. Nguyen, P. H. N. Nguyen,

Characterization of performance parameters of organic solar cells with a buffer ZnO layer,

Adv. Nat. Sci. Nanosci. Nanotechnol. 10 (2019) 015005.

G. T. Mola, A. M. El Sayed, M. S. Abdel-Wahab, M. M. Rashad, M. M. El-Desoky,

Nanocomposite for Solar Energy Application,

Nano Hybrids Compos. 20 (2018) 90–100.

J. Liu, S. Li, Y. Li, L. Xu, Y. Wang, Y. Xia,

Recent Advances of Plasmonic Nanoparticles and their Applications,

Materials (Basel) 11 (2018) 1833.

R. Ganesamoorthy, G. Sathiyan, P. Sakthivel,

Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications,

Sol. Energy Mater. Sol. Cells 161 (2017) 102.

Hyosung Choi, Jung-Pil Lee, Seo-Jin Ko, Jae-Woo Jung, Hyungmin Park, Seungmin Yoo, Okji Park, Jong-Ryul Jeong, Soojin Park, Jin Young Kim,

Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells,

Nano Lett. 13 (2013) 2204.

Juanjuan Wang, Shengli Jia, Yang Cao, Wenhao Wang, Peng Yu,

Design Principles for Nanoparticle Plasmon-Enhanced Organic Solar Cells,

Nanoscale Res. Lett. 13 (2018) 211.

Alamgeer, Muhammad Tahir, Mahidur R Sarker, Shabina Ali, Ibraheem, Shahid Hussian, Sajad Ali, Muhammad Imran Khan, Dil Nawaz Khan, Rashid Ali, et al.,

Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications,

Polymers 15 (2023) 363.

Y. Bao, J. Liu, F. Kerner, N. Schlüter, D. Schröder,

Magnetic Nanocomposite Modified Hybrid Hole-Transport Layer for Constructing Organic Solar Cells with High Efficiencies,

ACS Appl. Mater. Interfaces 16 (2024) 54081.

T. H. Hoang, T. G. Ho, V. H. Nguyen, T. Tran, V. T. Chu,

Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors,

Sensors Actuators, B Chem. 249 (2017) 348.

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, L. I. Yarytska,

Sensory properties of hybrid composites based on poly(3,4-ethylenedioxythiophene)-porous silicon-carbon nanotubes,

Nanoscale Res. Lett. 10 (2015) 1.

I. B. Olenych, L. S. Monastyrskii, O. I. Aksimentyeva, B. S. Sokolovskii,

Humidity sensitive structures on the basis of porous silicon,

Ukr. J. Phys. 56 (2011) 1198.

N. N. Dinh, Tr. S. Tr. Khanh, L. M. Long, N. D. Cuong, N. P. H. Nam,

Nanomaterials for Organic Optoelectronic Devices: Organic Light-Emitting Diodes, Organics Solar Cells and Organic Gas Sensors,

Mater. Trans. 61 (2020) 1422.

B. Jache, C. Neumann, J. Becker, B. M. Smarsly, P. Adelhelm,

Towards commercial products by nanocasting: characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure,

J. Mater. Chem. 22 (2012) 10787.

T. S. T. Khanh, N. D. Hoa, N. V. Duy, N. D. Chien, N. V. Hieu,

Ammonia Gas Sensing Characteristic of P3HT-rGO-MWCNT Composite Films,

Appl. Sci. 11 (2021) 6675.

S. Jose, S. Das, T. R. Vakamalla, D. Sen, Electrochemical Glucose Sensing Using Molecularly Imprinted Polyaniline – Copper Oxide Coated Electrode,

Surf. Engin. Appl. Electrochem. 58 (2022) 260.

Y. Li, Y. Zhang, X. Zhang, B. Pan, Y. Wang, J. Sun, High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties,

Sens. Actuators B: Chem. 264 (2018) 285.

L. Pilan, M. Raicopol, Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites,

UPB Sci. Bull. Ser. B 76 (2014) 155.

D. Yang, Y. Li, Y. Wang, Y. Zhang, X. Zhang, J. Sun, Polyaniline-based biological and chemical sensors: Sensing mechanism, configuration design, perspective,

ACS Appl. Electron. Mater. 5 (2023) 593.

D. Aycan, F. Karaca, N. Alemdar, Development of hyaluronic acid-based electroconductive hydrogel as a sensitive non-enzymatic glucose sensor,

Mater. Today Commun. 35 (2023) 105745.

G. Wu, H. Du, D. Lee, Y. L. Cha, W. Kim, X. Zhang, D.-J. Kim, Polyaniline/Graphene-Functionalized Flexible Waste Mask Sensors for Ammonia and Volatile Sulfur Compound Monitoring,

ACS Appl. Mater. Interfaces 14 (2022) 56056.

Y. Yan, X. Zhang, Y. Li, Y. Wang, J. Sun, Conducting polymer-inorganic nanocomposite-based gas sensors: a review,

Sci. Technol. Adv. Mater. 21 (2020) 768.

Shubham Sharma, P. Sudhakara, Abdoulhdi A. B. Omran, Jujhar Singh, R. A. Ilyas, Recent trends and developments in conducting polymer nanocomposites for multifunctional applications,

Polymers 13 (2021) 2898.

C. V. Sudheep, Arunima Verma, Priya Jasrotia, Jehova Jire L. Hmar, Rajeev Gupta, Ajay Singh Verma, Jyoti, Ashish Kumar, Tanuj Kumar, Revolutionizing gas sensors: The role of composite materials with conducting polymers and transition metal oxides,

Results Chem. 7 (2024) 101255.

Downloads

Published

01-03-2025

How to Cite

[1]
N. N. Dinh, “Composites of conducting polymers and nanoparticles for thin-film-multilayers OLEDs, OSCs and gas sensors”, Comm. Phys., vol. 35, no. 1, p. 1, Mar. 2025.

Issue

Section

Reviews
Received 16-12-2024
Accepted 10-02-2025
Published 01-03-2025

Most read articles by the same author(s)

1 2 > >>