Photoluminescence Quenching of Nanocomposite Materials Used for Organic Solar Cells

Tran Thi Thao, Do Ngoc Chung, Nguyen Nang Dinh, Vo Van Truong


In this work, we have studied the photoluminescence (PL) quenching of two polymeric composites, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene) (P3HT) in presence of nc-TiO\(_{2}\) particles by PL- spectroscopy. PL quenching values are 19.2\(\text{\%}\) and 45.5\(\text{\%}\), for MEH-PPV+nc-TiO\(_{2}\) and P3HT+nc-TiO$_{2}$, respectively. The obtained results on the relationship of PL quenching and photoelectrical efficiency (PCE) of an OSC showed that the quenching coefficient of a semiconducting polymer can be considered as apreliminarycriterion for choosing an appropriate polymeric composite being used for OSC preparation. Under illumination of solar energyof 56 mW/cm\(^{2}\), P3HT+TiO\(_{2}\) based OSC possess FF, V$_{OC}$, J$_{SC}$ and PCE of 0.64, 0.243 V, 1.43 mA/cm\(^{2}\) and 0.45\(\text{\%}\), respectively.


photoluminescence (PL) quenching, nc-TiO$_{2}$, MEH-PPV+nc-TiO$_{2}$, P3HT+nc-TiO$_{2}$, heterojunctions, organic solar cell (OSC)

Full Text:


DOI: Display counter: Abstract : 147 views. PDF : 91 views.


  • There are currently no refbacks.

Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 


Copyright by