Compression Effects on Structural Relaxation Process of Amorphous Indomethacin

Tran Dinh Cuong, Anh D. Phan

Abstract


Indomethacin is a common nonsteroidal anti-inflammatory drug, but its glass transition behaviors remain ambiguous. Here we present a simple theoretical approach to investigate the molecular mobility of amorphous indomethacin under compression. In our model, the relaxation of a particle is governed by its nearest-neighbor interactions and long-range cooperative effects of fluid surroundings. On that basis, the temperature and pressure dependence of the structural relaxation time is deduced from the thermal expansion process. Additionally, we also consider correlations between the activated dynamics and the shear response in the deeply supercooled state. Our numerical calculations agree quantitatively well with previous experimental works.

Keywords


compression effects, structural relaxation, amorphous drug, indomethacin

Full Text:

PDF

References


R. J. Flower, Nat. Rev. Drug Discov. 2 (2003) 179.

https://www.nature.com/articles/nrd1034

T. X. Xiang and B. D. Anderson, Mol. Pharm. 10 (2013) 102.

https://pubs.acs.org/doi/abs/10.1021/mp3000698

X. Yuan, T. X. Xiang, B. D. Anderson, and E. J. Munson, Mol. Pharm. 12 (2015) 4518.

https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.5b00705

S. Lucas,Headache 56 (2016) 436.

https://headachejournal.onlinelibrary.wiley.com/doi/abs/10.1111/head.12769

D. W. Dodick, Curr. Pain Headache Rep. 8 (2004) 19.

https://link.springer.com/article/10.1007/s11916-004-0036-6

K. C. Sekar and K. E. Corff, J. Perinatol. 28 (2008) 60.

https://www.nature.com/articles/jp200852

H. Zhang, J. Fan, J. Wang, B. Dou, F. Zhou, J. Cao, J. Qu, Z. Cao, W. Zhao, and X. Peng, J. Am. Chem. Soc. 135 (2013) 17469.

https://pubs.acs.org/doi/abs/10.1021/ja4085308

H. Zhang, J. Fan, J. Wang, S. Zhang, B. Dou, and X. Peng, J. Am. Chem. Soc. 135 (2013) 11663.

https://pubs.acs.org/doi/abs/10.1021/ja4056905

X. Cao, T. Gao, J. Dong, X. Jiang, H. Zou, T. Liu, K. Yu, and W. Zeng, New J. Chem. 43 (2019) 7874.

https://pubs.rsc.org/lv/content/articlelanding/2019/nj/c9nj01473j/unauth#!divAbstract

www.drugbank.ca/drugs/DB00328

N. N. Shahin, N. F. Abdelkader, and M. M. Safar, Sci. Rep. 8 (2018) 1.

https://www.nature.com/articles/s41598-018-22727-6

M. Rams-Baron, R. Jachowicz, E. Boldyreva, D. Zhou, W. Jamroz, and M. Paluch, Amorphous Drugs, Springer, Heidelberg (2018).

https://www.springer.com/gp/book/9783319720012

B. C. Hancock and M. Parks, Pharm. Res. 17 (2000) 397.

https://link.springer.com/article/10.1023/A:1007516718048

K. Grzybowska, S. Capaccioli, and M. Paluch, Adv. Drug Deliv. Rev. 100 (2016) 158.

https://www.sciencedirect.com/science/article/pii/S0169409X15300028?casa_token=I-vPuS4nQAQAAAAA:e1ObtRnU8GobOewyKlBs38URvJwi6ry-0ugB-NesZb1xaoo3qcPKrX9Ix7bbWW4KcTzajdDDiWQ

E. Kaminska, K. Adrjanowicz, D. Zakowiecki, B. Milanowski, M. Tarnacka, L. Hawelek, M. Dulski, J. Pilch, W.Smolka, I. Kaczmarczyk-Sedlak, and K. Kaminski, Pharm. Res. 31 (2014) 2887.

https://link.springer.com/article/10.1007/s11095-014-1385-4

S. Mohapatra, S. Samanta, K. Kothari, P. Mistry, and R. Suryanarayanan, Cryst. Growth Des. 17 (2017) 3142.

https://pubs.acs.org/doi/abs/10.1021/acs.cgd.7b00096

Z. Wojnarowska, K. Adrjanowicz, P. Wlodarczyk, E. Kaminska, K. Kaminski, K. Grzybowska, R. Wrzalik, M.Paluch, and K. L. Ngai, J. Phys. Chem. B 113 (2009) 12536.

https://pubs.acs.org/doi/abs/10.1021/jp905162r

A. D. Phan, J. Knapik-Kowalczuk, M. Paluch, T. X. Hoang, and K. Wakabayashi, Mol. Pharm. 16 (2019) 2992.

https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.9b00230

A. D. Phan, K. Wakabayashi, M. Paluch, and V. D. Lam, RSC Adv. 9 (2019) 40214.

https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra08441j

A. D. Phan, T. T. T. Thuy, N. T. K. An, J. Knapik-Kowalczuk, M. Paluch, and K. Wakabayashi, AIP Adv. 10 (2020) 025128.

https://aip.scitation.org/doi/full/10.1063/1.5139101

A. D. Phan, A. Jedrzejowska, M. Paluch, and K. Wakabayashi, ACS Omega 5 (2020) 11035.

https://pubs.acs.org/doi/abs/10.1021/acsomega.0c00860

A. D. Phan and K. Wakabayashi, Pharmaceutics 12 (2020) 177.

https://www.mdpi.com/1999-4923/12/2/177/htm

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London (2006).

https://www.elsevier.com/books/theory-of-simple-liquids/hansen/978-0-12-370535-8

K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119 (2003) 1181.

https://aip.scitation.org/doi/abs/10.1063/1.1578632

K. S. Schweizer, J. Chem. Phys. 123 (2005) 244501.

https://aip.scitation.org/doi/abs/10.1063/1.2137701

G. Ngele and J. Bergenholtz, J. Chem. Phys. 108 (1998) 9893.

https://aip.scitation.org/doi/abs/10.1063/1.476428

A. D. Phan and K. S. Schweizer, J. Phys. Chem. B 122 (2018) 8451.

https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.8b04975

K. S. Schweizer, and G. Yatsenko, J. Chem. Phys. 127 (2007) 164505.

https://aip.scitation.org/doi/abs/10.1063/1.2780861

S. Mirigian and K. S. Schweizer, J. Phys. Chem. Lett. 4 (2013) 3648.

https://pubs.acs.org/doi/abs/10.1021/jz4018943

S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140 (2014) 194506.

https://aip.scitation.org/doi/abs/10.1063/1.4874842

S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140 (2014) 194507.

https://aip.scitation.org/doi/abs/10.1063/1.4874843

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Permagon Press, London (1975).

S. P. Andersson and O. Andersson, Macromolecules 31 (1998) 2999.

https://pubs.acs.org/doi/abs/10.1021/ma971282z

N. Dass and M. Kumari, Phys. Status Solidi (b) 124 (1984) 531.

https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2221240211

I. Avramov, A. Grzybowski, and M. Paluch, J. Non-Cryst. Solids 355 (2009) 733.

https://www.sciencedirect.com/science/article/pii/S0022309309000878?casa_token=AIbdv8I0bIAAAAAA:RrmsLS_7jfL6hCmVTeSMP0ZXH78GH3evogNicPcvlJiWJVVO3FFKo_MZemx1kYnQ126ArRPBfYs

M. Paluch, C. M. Roland, J. Gapinski, and A. Patkowski, J. Chem. Phys. 118 (2003) 3177.

https://aip.scitation.org/doi/abs/10.1063/1.1538597

Z. Wojnarowska, K. Adrjanowicz, K. Kaminski, L. Hawelek, and M. Paluch, J. Phys. Chem. B 114 (2010) 14815.

https://pubs.acs.org/doi/abs/10.1021/jp104444q

K. Adrjanowicz, K. Kaminski, Z. Wojnarowska, M. Dulski, L. Hawelek, S. Pawlus, M. Paluch, and W. Sawicki, J. Phys. Chem. B 114 (2010) 6579.

https://pubs.acs.org/doi/abs/10.1021/jp910009b

K. Adrjanowicz, K. Kaminski, M. Paluch, and K. Niss, Cryst. Growth Des. 15 (2015) 3257.

https://pubs.acs.org/doi/abs/10.1021/acs.cgd.5b00373

A. Patkowski, J. Gapinski, and G. Meier, Colloid Polym. Sci. 282 (2004) 874.

https://link.springer.com/article/10.1007/s00396-004-1102-7

C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68 (2005) 1405.

https://iopscience.iop.org/article/10.1088/0034-4885/68/6/R03/meta?casa_token=j1aaYOl14zoAAAAA:VBw83To17Muz1zi5tEwlp3El92GyztJyKtui7Ejxl85rdjykhzPJPwagRqE7CwMZxZToYMSZLoVlVm0

R. Casalini and C. M. Roland, Phys. Rev. B 71 (2005) 014210.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.014210

M. Paluch, E. Masiewicz, A. Grzybowski, S. Pawlus, J. Pionteck, and Z. Wojnarowska, J. Chem. Phys. 141 (2014) 134507.

https://aip.scitation.org/doi/abs/10.1063/1.4897208

E. Masiewicz, A. Grzybowski, A. P. Sokolov, and M. Paluch, J. Phys. Chem. Lett. 3 (2012) 2643.

https://pubs.acs.org/doi/abs/10.1021/jz301168c

T. D. Cuong, A. D. Phan, K. Wakabayashi, and P. T. Huy, J. Non-Cryst. Solids 538 (2020) 120024.

https://www.sciencedirect.com/science/article/pii/S0022309320301411?casa_token=pwbttbP8nzAAAAAA:2lI245JOZA3TmMppms_IRhuvQBs5bq0txdxSeT_oPpxolFjlLbUacp2ZTmVu50CbXSC-8QoJtCQ

J. C. Dyre, J. Non-Cryst. Solids 235 (1998) 142.

https://www.sciencedirect.com/science/article/pii/S002230939800502X?casa_token=YKIemLEHHp4AAAAA:TsnJuCQA37D8OibTxtbExnNqzZypfKVhh1ogoyWvZjwQYkYaK9RTe-y-IIscQTLqA_FgnmckV2E

C. Klieber, T. Hecksher, T. Pezeril, D. H. Torchinsky, J. C. Dyre, and K. A. Nelson, J. Chem. Phys. 138 (2013) 12A544.

https://aip.scitation.org/doi/abs/10.1063/1.4789948

K. L. Kearns, T. Still, G. Fytas, and M. D. Ediger, Adv. Mater. 22 (2010) 39.

https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200901673

T. Hecksher and J. C. Dyre, J. Non-Cryst. Solids 407 (2015) 14.

https://www.sciencedirect.com/science/article/pii/S0022309314004529?casa_token=5D_HhpBPMLcAAAAA:eKMNI01BXz4Tj1Kw6s2dX1-s6kD8zhkl6yVM2zuv5tedGlcI6kGhT-u-TlDFS4dzIUmCDXaS_i0

T. Hecksher, D. H. Torchinsky, C. Klieber, J. A. Johnson, J. C. Dyre, and K. A. Nelson, Proc. Natl. Acad. Sci.U.S.A. 114 (2017) 8710.

https://www.pnas.org/content/114/33/8710.short




DOI: https://doi.org/10.15625/0868-3166/15377 Display counter: Abstract : 226 views. PDF : 66 views.

Refbacks

  • There are currently no refbacks.




Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by