An analytical nonlinear displacement model of electrothermal V-shaped actuator

Kien Trung Hoang, Vu Cong Ham, Phuc Hong Pham, Truong Duc Phuc
Author affiliations

Authors

  • Kien Trung Hoang \(^1\) Le Quy Don Technical University, Hanoi, Vietnam
  • Vu Cong Ham \(^1\) Le Quy Don Technical University, Hanoi, Vietnam
  • Phuc Hong Pham \(^2\) Hanoi University of Science and Technology, Hanoi, Vietnam
  • Truong Duc Phuc \(^2\) Hanoi University of Science and Technology, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/20980

Keywords:

nonlinear strain-displacement relation, nonlinear displacement, electrothermal V-shaped actuator (EVA), thermal-mechanical model

Abstract

This work presents an analytical model to determine nonlinear displacements of electrothermal V-shaped actuators. The nonlinear displacement model of V-shaped beams fixed at both ends is established based on considering the axial deformation of the beam. The 3D model of the V-shaped microactuator was established to verify the theoretical nonlinear model. The evaluation shows that the displacement deviation between the analytical nonlinear model and simulation is approximately 7.7% at the driving voltage of 16 V. This confirms the advantages of the proposed model to predict more precisely the displacement of the electrothermal V-shaped actuator.

Downloads

Download data is not yet available.

References

A. Potekhina and C. Wang. Review of electrothermal actuators and applications. Actuators, 8, (2019). DOI: https://doi.org/10.3390/act8040069

Z. Zhang, Y. Yu, X. Liu, and X. Zhang. A comparison model of V- and Z-shaped electrothermal microactuators. In 2015 IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, (2015), pp. 1025–1030. DOI: https://doi.org/10.1109/ICMA.2015.7237626

P. Shivhare, G. Uma, and M. Umapathy. Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance. Microsystem Technologies, 22, (2015), pp. 2623–2631. DOI: https://doi.org/10.1007/s00542-015-2561-0

T. Hu, Y. Zhao, X. Li, Y. Zhao, and Y. Bai. Design and fabrication of an electro-thermal linear motor with large output force and displacement. In 2016 IEEE SENSORS, IEEE, (2016). DOI: https://doi.org/10.1109/ICSENS.2016.7808548

H. D. Espinosa, Y. Zhu, and N. Moldovan. Design and operation of a MEMS-based material testing system for nanomechanical characterization. Journal of Microelectromechanical Systems, 16, (2007), pp. 1219–1231. DOI: https://doi.org/10.1109/JMEMS.2007.905739

T. Hu, Y. Zhao, X. Li, Y. Zhao, and Y. Bai. Integration design of MEMS electrothermal safety-and-arming devices. Microsystem Technologies, 23, (2016), pp. 953–958. DOI: https://doi.org/10.1007/s00542-016-2901-8

Z. Zhang, W. Zhang, Q. Wu, Y. Yu, X. Liu, and X. Zhang. Closed-form modelling and design analysis of V- and Z-shaped electrothermal microactuators. Journal of Micromechanics and Microengineering, 27, (2016). DOI: https://doi.org/10.1088/1361-6439/27/1/015023

Z. Zhang, Y. Yu, X. Liu, and X. Zhang. Dynamic modelling and analysis of V- and Z-shaped electrothermal microactuators. Microsystem Technologies, 23, (2016), pp. 3775–3789. DOI: https://doi.org/10.1007/s00542-016-3180-0

C. D. Lott, T. W. McLain, J. N. Harb, and L. L. Howell. Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator. Sensors and Actuators A: Physical, 101, (2002), pp. 239–250. DOI: https://doi.org/10.1016/S0924-4247(02)00202-9

T. Shan, X. Qi, L. Cui, and X. Zhou. Thermal behavior modeling and characteristics analysis of electrothermal microactuators. Microsystem Technologies, 23, (2016), pp. 2629–2640. DOI: https://doi.org/10.1007/s00542-016-3070-5

D. T. Nguyen, K. T. Hoang, and P. H. Pham. Heat transfer model and critical driving frequency of electrothermal V-shaped actuators. In Lecture Notes in Networks and Systems, Springer International Publishing, Vol. 104, (2019), pp. 394–405. DOI: https://doi.org/10.1007/978-3-030-37497-6_46

K. T. Hoang, D. T. Nguyen, and P. H. Pham. Impact of design parameters on working stability of the electrothermal V-shaped actuator. Microsystem Technologies, 26, (2019), pp. 1479–1487. DOI: https://doi.org/10.1007/s00542-019-04682-y

Y. Zhu, A. Corigliano, and H. D. Espinosa. A thermal actuator for nanoscale in situ microscopy testing: design and characterization. Journal of Micromechanics and Microengineering, 16, (2006), pp. 242–253. DOI: https://doi.org/10.1088/0960-1317/16/2/008

M. Pustan, R. Chiorean, C. Birleanu, C. Dudescu, R. Muller, A. Baracu, and R. Voicu. Reliability design of thermally actuated MEMS switches based on V-shape beams. Microsystem Technologies, 23, (2016), pp. 3863–3871. DOI: https://doi.org/10.1007/s00542-015-2789-8

E. T. Enikov, S. S. Kedar, and K. V. Lazarov. Analytical model for analysis and design of V-shaped thermal microactuators. Journal of Microelectromechanical Systems, 14, (2005), pp. 788–798. DOI: https://doi.org/10.1109/JMEMS.2005.845449

R. Hull. Properties of crystalline silicon, number 20. London: INSPEC, (1999).

Downloads

Published

29-06-2024

Issue

Section

Research Article

Categories