A simple size-dependent isogeometric approach for bending analysis of functionally graded microplates using the modified strain gradient elasticity theory

Chien H. Thai, H. Nguyen-Xuan
Author affiliations

Authors

  • Chien H. Thai Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • H. Nguyen-Xuan Center for Interdisciplinary Research in Technology, Ho Chi Minh City University of Technology, Vietnam https://orcid.org/0000-0002-1746-8297

DOI:

https://doi.org/10.15625/0866-7136/15372

Keywords:

isogeometric analysis, functionally graded microplate, modified strain gradient theory, simple first-order shear deformation theory

Abstract

In this study, a simple size-dependent isogeometric approach for bending analysis of functionally graded (FG) microplates using the modified strain gradient theory (MSGT), simple first-order shear deformation theory (sFSDT) and isogeometric analysis is presented for the first time. The present approach reduces one variable when comparing with the original first-order shear deformation theory (FSDT) within five variables and only considers three material length scale parameters (MLSPs) to capture size effects. Effective material properties as Young’s modulus, Poisson’s ratio and density mass are computed by a rule of mixture. Thanks to the principle of virtual work, the essential equations which are solved by the isogeometric analysis method, are derived. Rectangular and circular FG microplates with different boundary conditions, volume fraction and material length scale parameter are exampled to evaluate the deflections of FG microplates.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. C. Eringen. Nonlocal polar elastic continua. International Journal of Engineering Science, 10, (1), (1972), pp. 1–16. https://doi.org/10.1016/0020-7225(72)90070-5. https://doi.org/10.1016/0020-7225(72)90070-5.">

H. Salehipour, A. R. Shahidi, and H. Nahvi. Modified nonlocal elasticity theory for functionally graded materials. International Journal of Engineering Science, 90, (2015), pp. 44–57. https://doi.org/10.1016/j.ijengsci.2015.01.005. https://doi.org/10.1016/j.ijengsci.2015.01.005.">

R. D. Mindlin and N. N. Eshel. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4, (1), (1968), pp. 109–124. https://doi.org/10.1016/0020-7683(68)90036-x. https://doi.org/10.1016/0020-7683(68)90036-x.">

F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39, (10), (2002), pp. 2731–2743. https://doi.org/10.1016/s0020-7683(02)00152-x. https://doi.org/10.1016/s0020-7683(02)00152-x.">

M. E. Gurtin, J.Weissmuller, and F. Larche. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78, (5), (1998), pp. 1093–1109. https://doi.org/10.1080/01418619808239977. https://doi.org/10.1080/01418619808239977.">

E. C. Aifantis. Strain gradient interpretation of size effects. International Journal of Fracture, 95, (1), (1999), pp. 299–314. https://doi.org/10.1023/A:1018625006804. https://doi.org/10.1023/A:1018625006804.">

R. D. Mindlin. Microstructure in linear elasticity. Archive for Rational Mechanics and Analysis, 16, (1), (1964), pp. 51–78.

D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, (8), (2003), pp. 1477–1508. https://doi.org/10.1016/s0022-5096(03)00053-x. https://doi.org/10.1016/s0022-5096(03)00053-x.">

B. Wang, S. Zhou, J. Zhao, and X. Chen. A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. European Journal of Mechanics-A/Solids, 30, (4), (2011), pp. 517–524. https://doi.org/10.1016/j.euromechsol.2011.04.001. https://doi.org/10.1016/j.euromechsol.2011.04.001.">

A. A. Movassagh and M. J. Mahmoodi. A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. European Journal of Mechanics-A/Solids, 40, (2013), pp. 50–59. https://doi.org/10.1016/j.euromechsol.2012.12.008. https://doi.org/10.1016/j.euromechsol.2012.12.008.">

M. Mirsalehi, M. Azhari, and H. Amoushahi. Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method. European Journal of Mechanics-A/Solids, 61, (2017), pp. 1–13. https://doi.org/10.1016/j.euromechsol.2016.08.008. https://doi.org/10.1016/j.euromechsol.2016.08.008.">

A. Li, S. Zhou, S. Zhou, and B. Wang. A size-dependent model for bi-layered Kirchhoff microplate based on strain gradient elasticity theory. Composite Structures, 113, (2014), pp. 272–280. https://doi.org/10.1016/j.compstruct.2014.03.028. https://doi.org/10.1016/j.compstruct.2014.03.028.">

R. Ansari, R. Gholami, M. F. Shojaei, V. Mohammadi, and S. Sahmani. Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. European Journal of Mechanics-A/Solids, 49, (2015), pp. 251–267. https://doi.org/10.1016/j.euromechsol.2014.07.014. https://doi.org/10.1016/j.euromechsol.2014.07.014.">

B. Zhang, Y. He, D. Liu, J. Lei, L. Shen, and L. Wang. A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Composites Part B: Engineering, 79, (2015), pp. 553–580. https://doi.org/10.1016/j.compositesb.2015.05.017. https://doi.org/10.1016/j.compositesb.2015.05.017.">

B. Zhang, Y. He, D. Liu, L. Shen, and J. Lei. An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation. Applied Mathematical Modelling, 39, (13), (2015), pp. 3814–3845. https://doi.org/10.1016/j.apm.2014.12.001. https://doi.org/10.1016/j.apm.2014.12.001.">

C. H. Thai, A. J. M. Ferreira, and H. Nguyen-Xuan. Isogeometric analysis of size-dependent isotropic and sandwich functionally graded microplates based on modified strain gradient elasticity theory. Composite Structures, 192, (2018), pp. 274–288. https://doi.org/10.1016/j.compstruct.2018.02.060. https://doi.org/10.1016/j.compstruct.2018.02.060.">

A. Farzam and B. Hassani. Size-dependent analysis of FG microplates with temperature-dependent material properties using modified strain gradient theory and isogeometric approach. Composites Part B: Engineering, 161, (2019), pp. 150–168. https://doi.org/10.1016/j.compositesb.2018.10.028. https://doi.org/10.1016/j.compositesb.2018.10.028.">

S. Thai, H.-T. Thai, T. P. Vo, and V. I. Patel. Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis. Computers & Structures, 190, (2017), pp. 219–241. https://doi.org/10.1016/j.compstruc.2017.05.014. https://doi.org/10.1016/j.compstruc.2017.05.014.">

C. H. Thai, A. J. M. Ferreira, and P. Phung-Van. Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Composites Part B: Engineering, 169, (2019), pp. 174–188. https://doi.org/10.1016/j.compositesb.2019.02.048. https://doi.org/10.1016/j.compositesb.2019.02.048.">

C. H. Thai, A. J. M. Ferreira, T. Rabczuk, and H. Nguyen-Xuan. Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory. European Journal of Mechanics-A/Solids, 72, (2018), pp. 521–538. https://doi.org/10.1016/j.euromechsol.2018.07.012. https://doi.org/10.1016/j.euromechsol.2018.07.012.">

H. Salehipour and A. Shahsavar. A three dimensional elasticity model for free vibration analysis of functionally graded micro/nano plates: Modified strain gradient theory. Composite Structures, 206, (2018), pp. 415–424. https://doi.org/10.1016/j.compstruct.2018.08.033. https://doi.org/10.1016/j.compstruct.2018.08.033.">

T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194, (39-41), (2005), pp. 4135–4195. https://doi.org/10.1016/j.cma.2004.10.008. https://doi.org/10.1016/j.cma.2004.10.008.">

Downloads

Published

27-09-2020

How to Cite

[1]
C. H. Thai and H. Nguyen-Xuan, A simple size-dependent isogeometric approach for bending analysis of functionally graded microplates using the modified strain gradient elasticity theory, Vietnam J. Mech. 42 (2020) 255–267. DOI: https://doi.org/10.15625/0866-7136/15372.

Issue

Section

Scientific articles dedicated to Professor J.N. Reddy