Accurate through-the-thickness stress distributions in thin-walled metallic structures subjected to large displacements and large rotations

A. Pagani, R. Azzara, R. Augello, E. Carrera, B. Wu
Author affiliations

Authors

  • A. Pagani Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy https://orcid.org/0000-0001-9074-2558
  • R. Azzara Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
  • R. Augello Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
  • E. Carrera Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
  • B. Wu School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland

DOI:

https://doi.org/10.15625/0866-7136/15042

Keywords:

Carrera Unified Formulation, three-dimensional stress field, second Piola-Kirchhoff stress, refined 2D shell theory, geometrical nonlinearity

Abstract

The present paper presents the evaluation of three-dimensional (3D) stress distributions of shell structures in the large displacement and rotation fields. The proposed geometrical nonlinear model is based on a combination of the Carrera Unified Formulation (CUF) and the Finite Element Method (FEM). Besides, a Newton-Raphson linearization scheme is adopted to compute the geometrical nonlinear equations, which are constrained using the arc-length path-following method. Static analyses are performed using refined models and the full Green-Lagrange strain-displacement relations. The Second Piola-Kirchhoff (PK2) stress distributions are evaluated, and lower- to higher-order expansions are employed. Popular benchmarks problems are analyzed, including cylindrical isotropic shell structure with various boundary and loading conditions. Various numerical assessments for different equilibrium conditions in the moderate and large displacement fields are proposed. Results show the distribution of axial and shear stresses, varying the refinement of the proposed two-dimensional (2D) shell model. It is shown that for axial components, a lower-order expansion is sufficient, whereas a higher-order one is needed to accurately predict shear stresses.

Downloads

Download data is not yet available.

References

P. F. Pai. Highly flexible structures: Modeling, computation, and experimentation. AIAA Education Series, Reston, VA, (2007).

E. Carrera, A. Pagani, R. Augello, and B.Wu. Popular benchmarks of nonlinear shell analysis solved by 1D and 2D CUF-based finite elements. Mechanics of Advanced Materials and Structures, (2020), pp. 1–12. https://doi.org/10.1080/15376494.2020.1728450.

S. D. Poisson. Mémoire sur l’équilibre et le mouvement des corps élastiques. Mm. Acad. Sci. Instr. Fr., 8, (1829), pp. 357–570.

A. E. H. Love. Mathematical theory of elasticity. Cambridge University Press, (2013).

R. D. Mindlin. Influence of rotatory inertia and shear flexural motions of isotropic elastic plates. Journal of Applied Mechanics, 18, (1951), pp. 1031–1036.

G. Kirchhoff. Uber da gleichgewicht und die bewegung einer elastischen scheibe. Journal fur die eine und angewandte Mathematik, 40, (1850), pp. 51–88.

E. Reissner. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 12, (1945), pp. 69–76.

A. L. Cauchy. Sur l’equilibre et le mouvement d’une plaque solide. Exercises de Matematique, 3, (1828), pp. 328–355.

W. T. Koiter. On foundations of linear theory of thin elastic shells. In Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B-Physical Sciences, Vol. 73, (1970), pp. 169–195.

P. M. Naghdi. Theory of shells and plates. Linear Theories of Elasticity and Thermoelasticity, (1973), pp. 425–640, https://doi.org/10.1007/978-3-662-39776-3 5.

M. Petrolo and E. Carrera. Methods and guidelines for the choice of shell theories. Acta Mechanica, 231, (2), (2020), pp. 395–434. https://doi.org/10.1007/s00707-019-02601-w.

J. N. Reddy and C. F. Liu. A higher-order shear deformation theory of laminated elastic shells. International Journal of Engineering Science, 23, (3), (1985), pp. 319–330. https://doi.org/10.1016/0020-7225(85)90051-5.

J. N. Reddy. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, 51, (4), (1984), pp. 745–752. https://doi.org/10.1115/1.3167719.

J. N. Reddy. Mechanics of laminated composite plates and shells: Theory and analysis. New York: CRC Press, (2004).

E. Carrera. Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering, 9, (2), (2002), pp. 87–140. https://doi.org/10.1007/bf02736649.

E. Carrera. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering, 10, (3), (2003), pp. 215–296. https://doi.org/10.1007/bf02736224.

M. Cinefra and E. Carrera. Shell finite elements with different through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures. International Journal for Numerical Methods in Engineering, 93, (2), (2013), pp. 160–182. https://doi.org/10.1002/nme.4377.

M. Cinefra and S. Valvano. A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites. Mechanics of Advanced Materials and Structures, 23, (11), (2016), pp. 1312–1325. https://doi.org/10.1080/15376494.2015.1070304.

G. Li, E. Carrera, M. Cinefra, A. G. de Miguel, A. Pagani, and E. Zappino. An adaptable refinement approach for shell finite element models based on node-dependent kinematics. Composite Structures, 210, (2019), pp. 1–19. https://doi.org/10.1016/j.compstruct.2018.10.111.

A. Pagani, E. Carrera, and R. Augello. Evaluation of various geometrical nonlinearities in the response of beams and shells. AIAA Journal, 57, (8), (2019), pp. 3524–3533. https://doi.org/10.2514/1.j057877.

B. Wu, A. Pagani, W. Q. Chen, and E. Carrera. Geometrically nonlinear refined shell theories by Carrera Unified Formulation. Mechanics of Advanced Materials and Structures, (2019), pp. 1–21. https://doi.org/10.1080/15376494.2019.1702237.

K. Y. Sze, X. H. Liu, and S. H. Lo. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design, 40, (2004), pp. 1551–1569. https://doi.org/10.1016/j.finel.2003.11.001.

A. N. Palazotto. Nonlinear analysis of shell structures. AIAA Series, (1992).

L. S. Ma and T. J. Wang. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. International Journal of Solids and Structures, 40, (13-14), (2003), pp. 3311–3330. https://doi.org/10.1016/s0020-7683(03)00118-5.

E. Carrera and H. Parisch. An evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells. Composite Structures, 40, (1), (1997), pp. 11–24. https://doi.org/10.1016/s0263-8223(97)00145-1.

T. J. R. Hughes and W. K. Liu. Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Computer Methods in Applied Mechanics and Engineering, 26, (3), (1981), pp. 331–362. https://doi.org/10.1016/0045-7825(81)90121-3.

K. S. Surana. Geometrically nonlinear formulation for the curved shell elements. International Journal for Numerical Methods in Engineering, 19, (4), (1983), pp. 581–615. https://doi.org/10.1002/nme.1620190409.

S. J. Lee andW. Kanok-Nukulchai. A nine-node assumed strain finite element for large-deformation analysis of laminated shells. International Journal for Numerical Methods in Engineering, 42, (5), (1998), pp. 777–798.

Y. Ko, P. S. Lee, and K. J. Bathe. The MITC4 shell element in geometric nonlinear analysis. Computers & Structures, 185, (2017), pp. 1–14. https://doi.org/10.1016/j.compstruc.2017.01.015.

W. Flugge. Stresses in shells. Springer Science & Business Media, (2013).

D. A. Tortorelli. Sensitivity analysis for non-linear constrained elastostatic systems. International Journal for Numerical Methods in Engineering, 33, (8), (1992), pp. 1643–1660. https://doi.org/10.1002/nme.1620330807.

M. Asghari. Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. International Journal of Engineering Science, 51, (2012), pp. 292–309. https://doi.org/10.1016/j.ijengsci.2011.08.013.

T. Belytschko,W. K. Liu, B. Moran, and K. Elkhodary. Nonlinear finite elements for continua and structures. JohnWiley & Sons, (2013).

R. M. Hackett. Hyperelasticity primer. Springer, (2016).

K. J. Bathe and S. Bolourchi. Large displacement analysis of three-dimensional beam structures. International Journal for Numerical Methods in Engineering, 14, (7), (1979), pp. 961–986. https://doi.org/10.1002/nme.1620140703.

E. Carrera, G. Giunta, and M. Petrolo. Beam structures: Classical and advanced theories. John Wiley & Sons, (2011).

E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Finite element analysis of structures through unified formulation. John Wiley & Sons, (2014).

E. Carrera, M. Filippi, P. K. R. Mahato, and A. Pagani. Accurate static response of single-and multi-cell laminated box beams. Composite Structures, 136, (2016), pp. 372–383. https://doi.org/10.1016/j.compstruct.2015.10.020.

M. Filippi and E. Carrera. Capabilities of 1D CUF-based models to analyse metallic/-composite rotors. Advances in Aircraft and Spacecraft Science, 3, (1), (2016), pp. 1–14. https://doi.org/10.12989/aas.2016.3.1.001.

E. Carrera and A. Pagani. Free vibration analysis of civil engineering structures by component-wise models. Journal of Sound and Vibration, 333, (19), (2014), pp. 4597–4620. https://doi.org/10.1016/j.jsv.2014.04.063.

A. Pagani, M. Petrolo, G. Colonna, and E. Carrera. Dynamic response of aerospace structures by means of refined beam theories. Aerospace Science and Technology, 46, (2015), pp. 360–373. https://doi.org/10.1016/j.ast.2015.08.005.

A. Pagani and E. Carrera. Unified formulation of geometrically nonlinear refined beam theories. Mechanics of Advanced Materials and Structures, 25, (1), (2018), pp. 15–31. https://doi.org/10.1080/15376494.2016.1232458.

A. Pagani and E. Carrera. Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation. Composite Structures, 170, (2017), pp. 40–52. https://doi.org/10.1016/j.compstruct.2017.03.008.

B. Wu, A. Pagani, M. Filippi, W. Q. Chen, and E. Carrera. Large-deflection and post-buckling analyses of isotropic rectangular plates by Carrera Unified Formulation. International Journal of Non-Linear Mechanics, 116, (2019), pp. 18–31. https://doi.org/10.1016/j.ijnonlinmec.2019.05.004.

A. Pagani, R. Augello, and E. Carrera. Frequency and mode change in the large deflection and postbuckling of compact and thin-walled beams. Journal of Sound and Vibration, 432, (2018), pp. 88–104. https://doi.org/10.1016/j.jsv.2018.06.024.

E. Carrera, A. Pagani, and R. Augello. Effect of large displacements on the linearized vibration of composite beams. International Journal of Non-Linear Mechanics, 120, (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103390.

A. E. Green andW. Zerna. Theoretical elasticity. Courier Corporation, (1992).

K. J. Bathe. Finite element procedure. Prentice Hall, Upper Saddle River, New Jersey, USA, (1996).

T. J. R. Hughes. The finite element method: Linear static and dynamic finite element analysis. Courier Corporation, (2012).

E. Carrera and G. Giunta. Refined beam theories based on a unified formulation. International Journal of Applied Mechanics, 2, (1), (2010), pp. 117–143. https://doi.org/10.1142/S1758825110000500.

E. Carrera and M. Petrolo. Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 47, (3), (2012), pp. 537–556. https://doi.org/10.1007/s11012-011-9466-5.

E. Carrera, A. G. de Miguel, and A. Pagani. Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications. International Journal of Mechanical Sciences, 120, (2017), pp. 286–300. https://doi.org/10.1016/j.ijmecsci.2016.10.009.

E. Carrera, M. Cinefra, G. Li, and G. M. Kulikov. MITC9 shell finite elements with miscellaneous through-the-thickness functions for the analysis of laminated structures. Composite Structures, 154, (2016), pp. 360–373. https://doi.org/10.1016/j.compstruct.2016.07.032.

J. N. Reddy. An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. Oxford University Press, Oxford, (2014).

E. Carrera. A study on arc-length-type methods and their operation failures illustrated by a simple model. Computers & Structures, 50, (2), (1994), pp. 217–229. https://doi.org/10.1016/0045-7949(94)90297-6.

M. A. Crisfield. A fast incremental/iterative solution procedure that handles “snap-through”. Computers & Structures, 13, (1), (1981), pp. 55–62. https://doi.org/10.1016/b978-0-08-027299-3.50009-1.

J. A. T. Barbosa and A. J. M. Ferreira. Geometrically nonlinear analysis of functionally graded plates and shells. Mechanics of Advanced Materials and Structures, 17, (1), (2009), pp. 40–48. https://doi.org/10.1080/15376490903082870.

Downloads

Published

27-09-2020

Issue

Section

Scientific articles dedicated to Professor J.N. Reddy