Nonlinear dynamic buckling of full-filled fluid sandwich FGM circular cylinder shells

Author affiliations

Authors

  • Khuc Van Phu Military Academy of Logistics, Hanoi, Vietnam
  • Le Xuan Doan Academy of Military Science and Technology, Hanoi, Vietnam https://orcid.org/0000-0002-2723-7839

DOI:

https://doi.org/10.15625/0866-7136/13306

Keywords:

dynamic buckling, dynamic critical loads, FGM-sandwich, full-filled fluid, circular cylinder shell

Abstract

This paper is concerned with the nonlinear dynamic buckling of sandwich functionally graded circular cylinder shells filled with fluid. Governing equations are derived using the classical shell theory and the geometrical nonlinearity in von Karman–Donnell sense is taken into account. Solutions of the problem are established by using Galerkin's method and Runge–Kutta method. Effects of thermal environment, geometric parameters, volume fraction index k and fluid on dynamic critical loads of shells are investigated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D. H. Bich and N. X. Nguyen. Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. Journal of Sound and Vibration, 331, (25), (2012), pp. 5488–5501. https://doi.org/10.1016/j.jsv.2012.07.024. https://doi.org/10.1016/j.jsv.2012.07.024.">

Y. W. Kim. Free vibration analysis of FGM cylindrical shell partially resting on Pasternak elastic foundation with an oblique edge. Composites Part B: Engineering, 70, (2015), pp. 263–276. https://doi.org/10.1016/j.compositesb.2014.11.024. https://doi.org/10.1016/j.compositesb.2014.11.024.">

N. D. Duc and P. T. Thang. Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations. Aerospace Science and Technology, 40, (2015), pp. 115–127. https://doi.org/10.1016/j.ast.2014.11.005. https://doi.org/10.1016/j.ast.2014.11.005.">

N. D. Duc, N. D. Tuan, P. Tran, N. T. Dao, and N. T. Dat. Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments. International Journal of Mechanical Sciences, 101, (2015), pp. 338–348. https://doi.org/10.1016/j.ijmecsci.2015.08.018. https://doi.org/10.1016/j.ijmecsci.2015.08.018.">

R. Bahadori and M. M. Najafizadeh. Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler–Pasternak elastic foundation by First-order Shear Deformation Theory and using Navier-differential quadrature solution methods. Applied Mathematical Modelling, 39, (16), (2015), pp. 4877–4894. https://doi.org/10.1016/j.apm.2015.04.012. https://doi.org/10.1016/j.apm.2015.04.012.">

D. H. Bich, D. V. Dung, and V. H. Nam. Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels. Composite Structures, 94, (8), (2012), pp. 2465–2473. https://doi.org/10.1016/j.compstruct.2012.03.012. https://doi.org/10.1016/j.compstruct.2012.03.012.">

D. H. Bich, D. V. Dung, V. H. Nam, and N. T. Phuong. Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression. International Journal of Mechanical Sciences, 74, (2013), pp. 190–200. https://doi.org/10.1016/j.ijmecsci.2013.06.002. https://doi.org/10.1016/j.ijmecsci.2013.06.002.">

B. Mirzavand, M. R. Eslami, and J. N. Reddy. Dynamic thermal postbuckling analysis of shear deformable piezoelectric-FGM cylindrical shells. Journal of Thermal Stresses, 36, (3), (2013), pp. 189–206. https://doi.org/10.1080/01495739.2013.768443. https://doi.org/10.1080/01495739.2013.768443.">

N. D. Duc and P. T. Thang. Nonlinear response of imperfect eccentrically stiffened ceramic–metal–ceramic FGM thin circular cylindrical shells surrounded on elastic foundations and subjected to axial compression. Composite Structures, 110, (2014), pp. 200–206. https://doi.org/10.1016/j.compstruct.2013.11.015. https://doi.org/10.1016/j.compstruct.2013.11.015.">

N. D. Duc, P. T. Thang, N. T. Dao, and H. V. Tac. Nonlinear buckling of higher deformable S-FGM thick circular cylindrical shells with metal–ceramic–metal layers surrounded on elastic foundations in thermal environment. Composite Structures, 121, (2015), pp. 134–141. https://doi.org/10.1016/j.compstruct.2014.11.009. https://doi.org/10.1016/j.compstruct.2014.11.009.">

D. H. Bich, N. X. Nguyen, and H. V. Tung. Postbuckling of functionally graded cylindrical shells based on improved Donnell equations. Vietnam Journal of Mechanics, 35, (1), (2013), pp. 1–15. https://doi.org/10.15625/0866-7136/35/1/2894. https://doi.org/10.15625/0866-7136/35/1/2894.">

V. H. Nam, N. T. Phuong, D. H. Bich, and D. V. Dung. Nonlinear static and dynamic buckling of eccentrically stiffened functionally graded cylindrical shells under axial compression surrounded by an elastic foundation. Vietnam Journal of Mechanics, 36, (1), (2014), pp. 27–47. https://doi.org/10.15625/0866-7136/36/1/3470. https://doi.org/10.15625/0866-7136/36/1/3470.">

G. G. Sheng and X. Wang. Thermomechanical vibration analysis of a functionally graded shell with flowing fluid. European Journal of Mechanics-A/Solids, 27, (6), (2008), pp. 1075–1087. https://doi.org/10.1016/j.euromechsol.2008.02.003. https://doi.org/10.1016/j.euromechsol.2008.02.003.">

G. G. Sheng and X. Wang. Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads. Composite Structures, 93, (1), (2010), pp. 162–170. https://doi.org/10.1016/j.compstruct.2010.06.004. https://doi.org/10.1016/j.compstruct.2010.06.004.">

Z. Iqbal, M. N. Naeem, N. Sultana, S. H. Arshad, and A. G. Shah. Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach. Applied Mathematics and Mechanics, 30, (11), (2009), pp. 1393–1404. https://doi.org/10.1007/s10483-009-1105-x. https://doi.org/10.1007/s10483-009-1105-x.">

A. G. Shah, T. Mahmood, M. N. Naeem, and S. H. Arshad. Vibrational study of fluid-filled functionally graded cylindrical shells resting on elastic foundations. ISRN Mechanical Engineering, 2011, (2011), pp. 1–13. https://doi.org/10.5402/2011/892460. https://doi.org/10.5402/2011/892460.">

F. M. A. da Silva, R. O. P. Montes, P. B. Goncalves, and Z. J. G. N. Del Prado. Nonlinear vibrations of fluid-filled functionally graded cylindrical shell considering a time-dependent lateral load and static preload. Journal of Mechanical Engineering Science, 230, (1), (2016), pp. 102–119. https://doi.org/10.1177/0954406215587729. https://doi.org/10.1177/0954406215587729.">

H. L. Dai, W. F. Luo, T. Dai, and W. F. Luo. Exact solution of thermoelectroelastic behavior of a fluid-filled FGPM cylindrical thin-shell. Composite Structures, 162, (2017), pp. 411–423. https://doi.org/10.1016/j.compstruct.2016.12.002. https://doi.org/10.1016/j.compstruct.2016.12.002.">

P. V. Khuc, B. H. Dao, and D. X. Le. Analysis of nonlinear thermal dynamic responses of sandwich functionally graded cylindrical shells containing fluid. Journal of Sandwich Structures & Materials, (2017), pp. 1–22. https://doi.org/10.1177/1099636217737235. https://doi.org/10.1177/1099636217737235.">

D. O. Brush and B. O. Almroth. Buckling of bars, plates, and shells. McGraw-Hill, New York, (1975).

A. S. Volmir. The nonlinear dynamics of plates and shells. Science edition, Moscow, (1975).

B. Budiansky and R. S. Roth. Axisymmetric dynamic buckling of clamped shallow spherical shells. NASA Technical Note, 510, (1962), pp. 597–606.

H. Huang and Q. Han. Nonlinear dynamic buckling of functionally graded cylindrical shells subjected to time-dependent axial load. Composite Structures, 92, (2), (2010), pp. 593–598. https://doi.org/10.1016/j.compstruct.2009.09.011. https://doi.org/10.1016/j.compstruct.2009.09.011.">

Downloads

Published

25-06-2019

How to Cite

[1]
K. V. Phu and L. X. Doan, Nonlinear dynamic buckling of full-filled fluid sandwich FGM circular cylinder shells, Vietnam J. Mech. 41 (2019) 179–192. DOI: https://doi.org/10.15625/0866-7136/13306.

Issue

Section

Research Article