Atomistic simulation of the uniaxial tension of black phosphorene nanotubes

Van-Trang Nguyen, Danh-Truong Nguyen, Minh-Quy Le
Author affiliations


  • Van-Trang Nguyen Thai Nguyen University of Technology, Thai Nguyen City, Vietnam, Vietnam
  • Danh-Truong Nguyen Hanoi University of Science and Technology, Vietnam
  • Minh-Quy Le Hanoi University of Science and Technology, Vietnam



2D material, atomistic simulation, phosphorene nanotube, mechanical properties


In the present work, the uniaxial tensile tests of 3 pairs black phosphorene nanotubes are simulated by molecular dynamics finite element method with Stillinger-Weber potential. Each pair contains an armchair black phosphorene nanotube and a zigzag one, which have approximately equal diameters. Three armchair black phosphorene nanotubes, namely (0, 15), (0, 19) and (0, 21); and three zigzag black phosphorene nanotubes, namely (20, 0), (26, 0) and (28, 0), are considered. We found that the Young's modulus of these tubes increases when their diameter increases. Their fracture stress and fracture strain are also investigated.


Download data is not yet available.


W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, and Z. Zhang. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Research, 7, (6), (2014), pp. 853–859. doi:10.1007/s12274-014-0446-7.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang. Black phosphorus field-effect transistors. Nature Nanotechnology, 9, (5), (2014), pp. 372–377. doi:10.1038/nnano.2014.35.

F. Xia, H. Wang, and Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, (2014). doi:10.1038/ncomms5458.

J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5, (2014). doi:10.1038/ncomms5475.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, (4), (2014), pp. 4033–4041. doi:10.1021/nn501226z.

L. Kou, T. Frauenheim, and C. Chen. Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response. The Journal of Physical Chemistry Letters, 5, (15), (2014), pp. 2675–2681. doi:10.1021/jz501188k.

G. C. Guo, X. L.Wei, D.Wang, Y. Luo, and L. M. Liu. Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries. Journal of Materials Chemistry A, 3, (21), (2015), pp. 11246–11252. doi:10.1039/c5ta01661d.

W. Li, Y. Yang, G. Zhang, and Y. W. Zhang. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Letters, 15, (3), (2015), pp. 1691–1697. doi:10.1021/nl504336h.

W. H. Chen, C. F. Yu, I. C. Chen, and H. C. Cheng. Mechanical property assessment of black phosphorene nanotube using molecular dynamics simulation. Computational Materials Science, 133, (2017), pp. 35–44. doi:10.1016/j.commatsci.2017.03.008.

V. Sorkin and Y. Zhang. Mechanical properties of phosphorene nanotubes: a density functional tight-binding study. Nanotechnology, 27, (39), (2016). doi:10.1088/0957-4484/27/39/395701.

R. Ansari, A. Shahnazari, and S. Rouhi. A density-functional-theory-based finite element model to study the mechanical properties of zigzag phosphorene nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 88, (2017), pp. 272–278. doi:10.1016/j.physe.2017.01.022.

I. E. Berinskii and F. M. Borodich. Elastic in-plane properties of 2D linearized models of graphene. Mechanics of Materials, 62, (2013), pp. 60–68. doi:10.1016/j.mechmat.2013.03.004.

Q. Wei and X. Peng. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 104, (25), (2014), p. 251915. doi:10.1063/1.4885215.

Z. Yang, J. Zhao, and N. Wei. Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations. Applied Physics Letters, 107, (2), (2015). doi:10.1063/1.4926929.

Z. D. Sha, Q. X. Pei, Z. Ding, J. W. Jiang, and Y. W. Zhang. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. Journal of Physics D: Applied Physics, 48, (39), (2015). doi:10.1088/0022-3727/48/39/395303.

J.W. Jiang and H. S. Park. Mechanical properties of single-layer black phosphorus. Journal of Physics D: Applied Physics, 47, (38), (2014). doi:10.1088/0022-3727/47/38/385304.

T. Hu, Y. Han, and J. Dong. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology, 25, (45), (2014). doi:10.1088/0957-4484/25/45/455703.

C. X. Wang, C. Zhang, J. W. Jiang, H. S. Park, and T. Rabczuk. Mechanical strain effects on black phosphorus nanoresonators. Nanoscale, 8, (2), (2016), pp. 901–905. doi:10.1039/c5nr06441d.

J.W. Jiang. Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology, 26, (31), (2015). doi:10.1088/0957-4484/26/31/315706.

B. Liu, Y. Huang, H. Jiang, S. Qu, and K. C. Hwang. The atomic-scale finite element method. Computer Methods in Applied Mechanics and Engineering, 193, (17-20), (2004), pp. 1849–1864. doi:10.1016/j.cma.2003.12.037.

J. Wackerfuß. Molecular mechanics in the context of the finite element method. International Journal for Numerical Methods in Engineering, 77, (7), (2009), pp. 969–997. doi:10.1002/nme.2442.

M. Q. Le and D. T. Nguyen. The role of defects in the tensile properties of silicene. Applied Physics A, 118, (4), (2015), pp. 1437–1445. doi:10.1007/s00339-014-8904-3.

M. Q. Le and D. T. Nguyen. Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Materials Science and Engineering: A, 615, (2014), pp. 481–488. doi:10.1016/j.msea.2014.07.109.

D. T. Nguyen, M. Q. Le, V. T. Nguyen, and T. L. Bui. Effects of various defects on the mechanical properties of black phosphorene. Superlattices and Microstructures, 112, (2017), pp. 186–199. doi:10.1016/j.spmi.2017.09.021.

Y. Takao, H. Asahina, and A. Morita. Electronic structure of black phosphorus in tight binding approach. Journal of the Physical Society of Japan, 50, (10), (1981), pp. 3362–3369. doi:10.1143/jpsj.50.3362.






Research Article