Identification of genetic variants in two Vietnamese patients with hypertrophic cardiomyopathy by Whole exome sequencing

Nguyen Thi Kim Lien, Nguyen Van Tung, Le Trong Tu, Dang Thi Hai Van, Vu Quynh Nga, Nguyen Ngoc Lan, Nguyen Thanh Hien, Le Tat Thanh, Nguyen Minh Duc, Nguyen Huy Hoang
Author affiliations

Authors

  • Nguyen Thi Kim Lien \(^1\) Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Nguyen Van Tung \(^1\) 1Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam https://orcid.org/0000-0003-4624-5567
  • Le Trong Tu \(^2\) Hanoi Medical University, Ministry of Health, Hanoi, Vietnam
    \(^3\) Hanoi Heart Hospital, Ministry of Health, Hanoi, Vietnam
    https://orcid.org/0000-0001-8878-8549
  • Dang Thi Hai Van \(^2\) Hanoi Medical University, Ministry of Health, Hanoi, Vietnam https://orcid.org/0009-0007-2574-7839
  • Vu Quynh Nga \(^3\) Hanoi Heart Hospital, Ministry of Health, Hanoi, Vietnam
  • Nguyen Ngoc Lan \(^1\) Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Nguyen Thanh Hien \(^1\) Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Le Tat Thanh \(^1\) Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Nguyen Minh Duc \(^1\) Institute of Genome Research
    \(^4\) National Research Center for Medicinal Plant Germplasm and Breeding, National Institute of Medicinal Materials, Hanoi, Vietnam
    https://orcid.org/0000-0002-5112-7728
  • Nguyen Huy Hoang \(^1\) Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-19499

Keywords:

hypertrophic cardiomyopathy (HCM), PRKAG2, PTPN11, variant, Vietnamese patient, Whole exome sequencing (WES)

Abstract

Hypertrophic cardiomyopathy (HCM) is a common genetic cardiovascular disease and a major cause of sudden death. It is also involved with increased morbidity and mortality of various cardiovascular diseases. Genetic factors have been identified as playing an important role in determining the phenotypic manifestation of cardiac hypertrophy. However, only 50–60% of HCM patients have been identified as having mutations in known genes, suggesting that studies are needed to find more disease genes. HCM is an autosomal dominant disorder caused by mutations in genes encoding for sarcomeric proteins and proteins involved in many cardiomyocyte signaling pathways that activate protein tyrosine kinases. The role of specific protein tyrosine phosphatases (PTPs) in these pathways is unknown. Advances in next-generation sequencing (NGS) technology allow the application of genetic analysis-based diagnostics to become more widespread and help differentiate HCM from other cardiomyopathies. The results of genetic diagnosis will provide insights into the cell biology and pathogenesis of HCM as a basis for developing therapies that can prevent or treat patients.

In this study, whole exome sequencing was performed on two patients who were diagnosed with HCM to screen the associated mutations. Two heterozygous mutations c.836A>C, p.Tyr279Ser and c.83A>C, p.His28Pro have been identified in the PTPN11 and PRKAG2 gene, respectively. These results have provided an understanding of the cause of the patient’s disease, helping clinicians diagnose and provide genetic counseling to the patient's family.

Downloads

Download data is not yet available.

References

Bai Y, Zheng JP, Lu F, Zhang XL, Sun CP, Guo WH, Zou YX, Lip GYH, Shi XB (2022) Prevalence, incidence and mortality of hypertrophic cardiomyopathy based on a population cohort of 21.9 million in China. Scientific Reports 12: 18799. https://doi.org/10.1038/s41598-022-20042-9.

Banankhah P, Fishbein GA, Dota A, Ardehali R (2018) Cardiac manifestations of PRKAG2 mutation. BMC Medical Genetics 19: 1. https://doi.org/10.1186/s12881-017-0512-6.

Baxi AJ, Restrepo CS, Vargas D, Marmol-Velez A, Ocazionez D, Murillo H (2016) Hypertrophic cardiomyopathy from A to Z: genetics, pathophysiology, imaging, and management. Radiographics 36: 335–354. https://doi.org/10.1148/rg.2016150137.

Bick AG, Flannick J, Ito K, Cheng S, Vasan RS, Parfenov MG, Herman DS, DePalma SR, Gupta N, Gabriel SB, et al. (2012) Burden of rare sarcomeric gene variants in the Framingham and Jackson Heart Study cohorts. Am J Hum Genet 91: 513–519. https://doi.org/10.1016/j.ajhg.2012.07.017.

Caiazza M, Rubino M, Monda E, Passariello A, Fusco A, Cirillo A, Esposito A, Pierno A, De Fazio F, Pacileo R, Evangelista E, Pacileo G, Russo MG, Limongelli G (2020) Combined PTPN11 and MYBPC3 gene mutations in an adult patient with Noonan syndrome and hypertrophic cardiomyopathy. Genes 11: 947. https://doi.org/10.3390/genes11080947.

Calore M (2017) The PRKAG2 gene and hypertrophic cardiomyopathy: an energetically imbalanced relationship. Am J Physiol Heart Circ Physiol 313: H248–H250. https://doi.org/10.1152/ajpheart.00316.2017.

Carcavilla A, Santome JL, Pinto I, Sanchez-Pozo J, Guillen-Navarro E, Martin-Frias M, Lapunzina P, Ezquieta B (2013) LEOPARD syndrome: a variant of Noonan syndrome strongly associated with hypertrophic cardiomyopathy. Rev Esp Cardiol (Engl Ed) 66(5): 350–356. https://doi.org/10.1016/j.rec.2012.09.015.

Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3): 659–669. https://doi.org/10.1042/bj3460659.

Elliott PM, Gimeno JR, Thaman R, Shah J, Ward D, Dickie S, Esteban MTT, McKenna WJ (2006) Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart 92: 785–791. https://doi.org/10.1136/hrt.2005.068577.

Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G (2014) ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35: 2733–2779. https://doi.org/10.1093/eurheartj/ehu284.

Esposito A, Monda E, Gragnano F, Simone F, Cesaro A, Natale F, Concilio C, Moscarella E, Caiazza M, Pazzanese V, et al. (2019) Prevalence and clinical implications of hyperhomocysteinaemia in patients with hypertrophic cardiomyopathy and MTHFR C6777T polymorphism. Eur J Prev Cardiol. https://doi.org/10.1177/2047487319888596.

Fabris E, Brun F, Guiseppe-Porto A, Losurdo P, Vitali-Sendoz L, Zecchin M, Severini GM, Mestroni L, Di Chiara A, Sinagra G (2013) Cardiac hypertrophy, accessory pathway, and conduction system disease in an adolescent: the PRKAG2 cardiac syndrome. J Am Coll Cardiol 62: e17. https://doi.org/10.1016/j.jacc.2013.02.099.

Fauchier L, Bisson A, Bodin A, Herbert J, Spiesser P, Pierre B, Clementy N, Bernard A, Balbuty D, Lip GYH (2022) Ischemic stroke in patients with hypertrophic cardiomyopathy according to presence or absence of atrial fibrillation. Stroke 53: 497–504. https://doi.org/10.1161/STROKEAHA.121.034213.

Garg L, Gupta M, Sabzwari SRA, Agrawal S, Agarwal M, Nazir T, Gordon J, Bozzongnia B, Martinez MW (2019) Atrial fibrillation in hypertrophic cardiomyopathy: Prevalence, clinical impact, and management. Heart Fail Rev 24: 189–197. https://doi.org/10.1007/s10741-018-9752-6.

Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33: 1–7. https://doi.org/10.1016/j.ceb.2014.09.004.

Hardie DG, Schaffer BE, Brunet A (2016) AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol 26: 190–201. https://doi.org/10.1016/j.tcb.2015.10.013.

Jayaraman R, Reinier K, Nair S, Aro AL, Uy-Evanado A, Rusinaru C, Stecker EC, Gunson K, Jui J, Chugh SS (2018) Risk factors of sudden cardiac death in the young: multiple-year community-wide assessment. Circulation 137: 1561–1570. https://doi.org/10.1161/CIRCULATIONAHA.117.031262.

Lauriol J, Cabrera JR, Roy A, Keith K, Hough SM, Damilano F, Wang B, Segarra GC, Flessa ME, Miller LE, Das S, Bronson R, Lee KH, Kontaridis MI (2016) Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest 126(8): 2989–3005. https://doi.org/10.1172/JCI80396.

Liu Y, Bai R, Wang L, Zhang C, Zhan C, Zhao R, Wan D, Chen X, Caceres G, Barr D, Barajas-Martinez H, Antzelevitch C, Hu A(2013) Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One 8: e64603. https://doi.org/10.1371/journal.pone.0064603.

Marian AJ (2008) Genetic determinants of cardiac hypertrophy. Curr Opin Cardiol 23(3): 199–205. https://doi.org/10.1097/HCO.0b013e3282fc27d9.

Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121: 749–770. https://doi.org/10.1161/CIRCRESAHA.117.311059.

Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol I, Wang B, Bauer M, Broson R, Franchini KG, Neel BG, Kontarridis MI (2011) Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 121(3): 1026–1043. https://doi.org/10.1172/JCI44972.

Maron BJ, Maron MS, Semsarian C (2012) Genetics of hypertrophic cardiomyopathy after 20 years: Clinical perspectives. J Am Coll Cardiol 60: 705–715. https://doi.org/10.1016/j.jacc.2012.02.068.

Maron MS (2012) Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 14: 13. https://doi.org/10.1186/1532-429X-14-13.

Maron BJ, Maron MS (2016) The Remarkable 50 Years of Imaging in HCM and How it Has Changed Diagnosis and Management: From M-Mode Echocardiography to CMR. JACC Cardiovasc Imaging 9: 858–872. https://doi.org/10.1016/j.jcmg.2016.05.003.

Maron MS, Hellawell JL, Lucove JC, Farzaneh-Far R, Olivotto I (2016) Occurrence of clinically diagnosed hypertrophic cardiomyopathy in the United States. Am J Cardiol 117: 1651–1654. https://doi.org/10.1016/j.amjcard.2016.02.044.

Maron BJ, Rowin EJ, Udelson JE, Maron MS (2018) Clinical Spectrum and Management of Heart Failure in Hypertrophic Cardiomyopathy. JACC Hear Fail 6: 353–363. https://doi.org/10.1016/j.jchf.2017.09.011.

Maron BJ (2018) Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med 379: 655–668. https://doi.org/10.1056/NEJMra1710575.

Mavrogeni S, Markousis-Mavrogenis G, Markussis V, Kolovou G (2015) The Emerging Role of Cardiovascular Magnetic Resonance Imaging in the Evaluation of Metabolic Cardiomyopathies. Horm Metab Res 47: 623–632. https://doi.org/10.1055/s-0035-1555913.

Mogensen J, Murphy RT, Kubo T, Bahl A, Moon JC, Klausen IC, Elliott PM, McKenna WJ (2004) Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J Am Coll Cardiol 44: 2315–2325. https://doi.org/10.1016/j.jacc.2004.05.088.

Mohi MG, Williams Ỉ, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilharck H, Akashi K, Gilliland DG, Neel BG (2005) Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7(2): 179–191. https://doi.org/10.1016/j.ccr.2005.01.010.

Moon I, Lee SY, Kim HK (2020) Trends of the prevalence and incidence of hypertrophic cardiomyopathy in Korea: A nationwide population-based cohort study. PLoS ONE 15: e0227012. https://doi.org/10.1371/journal.pone.0227012.

Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris R, Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Eliott PM, Macrae CA, McKenna WJ (2005) Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol 45: 922–930. https://doi.org/10.1016/j.jacc.2004.11.053.

Paardekooper Overman J, Yi JS, Bonetti M, Soulsby M, Presinger C, Stokes MP, Hui L, Silva JC, Overyoorde J, Giansanti P, Heck AJR, Kontandis MI, den Hertog J, Bennett AM (2014) PZR coordinates Shp2 Noonan and LEOPARD syndrome signaling in zebrafish and mice. Mol Cell Biol 34(15): 2874–2889. https://doi.org/10.1128/MCB.00135-14.

Porto AG, Brun F, Severini GM, Losurdo P, Fabris E, Taylor MRG, Mestroni L, Sinagra G (2016) Clinical Spectrum of PRKAG2 Syndrome. Circ Arrhythm Electrophysiol 9: e003121. https://doi.org/10.1161/CIRCEP.115.003121.

Poyhonen P, Hippala A, Ollila L, Kaasalainen T, Hanninen H, Helio T, Tallila J, Vasilescu C, Kivisto S, Ojala T, Holmstrom M (2015) Cardiovascular magnetic resonance findings in patients with PRKAG2 gene mutations. J Cardiovasc Magn Reson 17: 89. https://doi.org/10.1186/s12968-015-0192-3.

Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113: 274–284. https://doi.org/10.1172/JCI19874.

Semsarian C, Ingles J, Maron MS, Maron BJ (2015) New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol 65: 1249–1254. https://doi.org/10.1016/j.jacc.2015.01.019.

Sharma P, Middelberg RP, Andrew T, Johnson MR, Christley H, Brown MJ (2006) Heritability of left ventricular mass in a large cohort of twins. J Hypertens 24: 321–324. https://doi.org/10.1097/01.hjh.0000202815.18083.03.

Shoji Y, Ida S, Niihori T, Aoki Y, Okamoto N, Etani Y, Kawai M (2019) Genotype-phenotype correlation analysis in Japanese patients with Noonan syndrome. Endocr J 66(11): 983–994. https://doi.org/10.1507/endocrj.EJ18-0564.

Sternick EB, de Almeida Araujo S, Rocha C, Gollob M (2014) Myocardial infarction in a teenager. Eur Heart J 35: 1558–1558. https://doi.org/10.1093/eurheartj/ehu015.

Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jefferey S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4): 465–468. https://doi.org/10.1038/ng772.

Tartaglia M, Martnelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, Zampinto G, van der Burgt I, Palleschi A, Petrucci TC, Sorcini M, Schoch C, Foa R, Emanuei PD, Gelb BD (2006) Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 78(2): 279–290. https://doi.org/10.1086/499925.

Tower-Rader A, Desai MY (2017) Phenotype-genotype correlation in hypertrophic cardiomyopathy: less signal, more noise? Circ Cardiovasc Imaging 10: e006066. https://doi.org/10.1161/CIRCIMAGING.117.006066.

Wang G, Ji R, Zou W, Penny DJ, Fan Y (2017) Inherited cardiomyopathies: Genetics and Clinical genetic testing. Cardiovasc Innovations Appl 2(2): 297–308. https://doi.org/10.15212/CVIA.2017.0015.

Yang KQ, Lu CX, Zhang Y, Yang YK, Li JC, Lan T, Meng X, Fan P, Tian T, Wang LP, Liu YX, Zhang X, Zhou XL (2017) A novel PRKAG2 mutation in a Chinese family with cardiac hypertrophy and ventricular preexcitation. Scientific Reports 7: 2407. https://doi.org/10.1038/s41598-017-02455-z.

Yi JS, Perla S, Enyenihi L, Bennett AM (2020) Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. JCI Insight 5(15): e137753. https://doi.org/10.1172/jci.insight.137753.

Yogasundaram H, Paterson ID, Graham M, Sergi C, Oudit GY (2016) Glycogen storage disease because of a PRKAG2 mutation causing severe biventricular hypertrophy and high-grade atrio-ventricular block. Circ Heart Fail 9: e003367. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003367.

Zaha VG, Young LH (2012) AMP-activated protein kinase regulation and biological actions in the heart. Circ Res 111: 800–814. https://doi.org/10.1161/CIRCRESAHA.111.255505.

Zhao R, Zhao ZJ (2000) Dissecting the interaction of SHP-2 with PZR, an immunoglobulin family protein containing immunoreceptor tyrosine-based inhibitory motifs. J Biol Chem 275(8): 5453–5459. https://doi.org/10.1074/jbc.275.8.5453.

Downloads

Published

30-06-2024

How to Cite

Lien, N. T. K., Van Tung, N., Trong Tu, L., Van, D. T. H., Nga, V. Q., Lan, N. N., Hien, N. T., Thanh, L. T., Duc, N. M., & Hoang, N. H. (2024). Identification of genetic variants in two Vietnamese patients with hypertrophic cardiomyopathy by Whole exome sequencing. Vietnam Journal of Biotechnology, 22(2), 212–226. https://doi.org/10.15625/vjbt-19499

Issue

Section

Articles

Funding data

Most read articles by the same author(s)

<< < 1 2 3 4