Whole exome sequencing identified a pathogenic variant c.1620C>G in the FGFR3 gene in a Vietnamese patient

Duc Tien Nguyen, Thi Thanh Ngan Nguyen, Ngoc Lan Nguyen, Thi Anh Thuong Tran, Thi Bich Ngoc Can, Chi Dung Vu, Van Tung Nguyen, Thi Kim Lien Nguyen, Thanh Hien Nguyen, Duc Quan Nguyen, Thi Huong Giang Tran, Ke Long Phan, Huy Hoang Nguyen
Author affiliations

Authors

  • Duc Tien Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
    2 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
    3 19-8 Hospital, Ministry of Public Security, No. 9 Tran Binh street, Mai Dich ward, Cau Giay district, Hanoi, Vietnam
  • Thi Thanh Ngan Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Ngoc Lan Nguyen 4 Center for Gene and Protein Research, Hanoi Medical University, 1 Ton That Tung street, Dong Da, Hanoi, Vietnam
  • Thi Anh Thuong Tran 5 Center for Rare Diseases and Newborn Screening, Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi, Vietnam. https://orcid.org/0009-0003-5539-2574
  • Thi Bich Ngoc Can 5 Center for Rare Diseases and Newborn Screening, Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi, Vietnam.
  • Chi Dung Vu 5 Center for Rare Diseases and Newborn Screening, Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da, Hanoi, Vietnam. https://orcid.org/0009-0007-0418-2613
  • Van Tung Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0003-4624-5567
  • Thi Kim Lien Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0001-9294-6722
  • Thanh Hien Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Duc Quan Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0002-8152-5700
  • Thi Huong Giang Tran 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Ke Long Phan 6 Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. https://orcid.org/0000-0003-4998-260X
  • Huy Hoang Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-22379

Keywords:

c.1620C>G, FGFR3, hypochondroplasia, p.N540K, Vietnamese patient

Abstract

Fibroblast growth factor receptor (FGFR3)-related diseases can present a wide spectrum of symptoms, ranging from mild shortening of limbs to lethal skeletal dysplasia. Diagnosing FGFR3-related diseases can be challenging given phenotypic overlap with other skeletal dysplasia. The appropriate diagnosis of FGFR3-related diseases relies on a combination of clinical and radio-imaging data, and molecular analyses. In this report, we present a Vietnamese female with short stature, shortening of long bones, short and broad femoral neck, and squared and shortened ilia. Whole exome sequencing and variant filtering were performed in the proband to identify a disease-causing variant. Sanger sequencing was carried out to confirm the presence of the variant in the proband as well as in her parents. The result showed that a c.1620C>G (p.N540K) in the FGFR3 gene was found in the proband. The parents and sister carried normal alleles. The variant in the proband is de novo. The variant was classified as a pathogenic variant in the ClinVar database. Therefore, the proband was diagnosed with hypochondroplasia. This is the first report of pathogenic variant c.1620C>G (p.N540K) in the FGFR3 gene identified in the Vietnamese patient.

Downloads

References

Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, 76, 7.20.1-7.20.41. https://doi.org/10.1002/0471142905.hg0720s76

Almeida, M. R., Campos-Xavier, A. B., Medeira, A., Cordeiro, I., Sousa, A. B., Lima, M., et al. (2009). Clinical and molecular diagnosis of the skeletal dysplasias associated with mutations in the gene encoding Fibroblast Growth Factor Receptor 3 (FGFR3) in Portugal. Clinical Genetics, 75(2), 150–156. https://doi.org/10.1111/j.1399-0004.2008.01123.x

Bellus, G. A., Bamshad, M. J., Przylepa, K. A., Dorst, J., Lee, R. R., Hurko, O., et al. (1999). Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN): Phenotypic analysis of a new skeletal dysplasia caused by a Lys650Met mutation in fibroblast growth factor receptor 3. American Journal of Medical Genetics, 85(1), 53–65.

Bonaventure, J., Rousseau, F., Legeai-Mallet, L., Le Merrer, M., Munnich, A., & Maroteaux, P. (1996). Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism. American Journal of Medical Genetics, 63(1), 148–154. https://doi.org/10.1002/(SICI)1096-8628(19960503)63:1<148::AID-AJMG26>3.0.CO;2-N

Cheung, M. S., Cole, T. J., Arundel, P., Bridges, N., Burren, C. P., Cole, T., et al. (2024). Growth reference charts for children with hypochondroplasia. American Journal of Medical Genetics. Part A, 194(2), 243–252. https://doi.org/10.1002/ajmg.a.63431

French, T., & Savarirayan, R. (1993). Thanatophoric Dysplasia. In M. P. Adam, J. Feldman, G. M. Mirzaa, R. A. Pagon, S. E. Wallace, L. J. Bean, K. W. Gripp, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1366/

Horton, W. A. (1997). Fibroblast growth factor receptor 3 and the human chondrodysplasias. Current Opinion in Pediatrics, 9(4), 437–442. https://doi.org/10.1097/00008480-199708000-00021

Krejci, P., Salazar, L., Kashiwada, T. A., Chlebova, K., Salasova, A., Thompson, L. M., et al.(2008). Analysis of STAT1 activation by six FGFR3 mutants associated with skeletal dysplasia undermines dominant role of STAT1 in FGFR3 signaling in cartilage. PloS One, 3(12), e3961. https://doi.org/10.1371/journal.pone.0003961

Linnankivi, T., Mäkitie, O., Valanne, L., & Toiviainen-Salo, S. (2012). Neuroimaging and neurological findings in patients with hypochondroplasia and FGFR3 N540K mutation. American Journal of Medical Genetics. Part A, 158A (12), 3119–3125. https://doi.org/10.1002/ajmg.a.35642

Mortier, G. R., Cohn, D. H., Cormier-Daire, V., Hall, C., Krakow, D., Mundlos, S., et al. (2019). Nosology and classification of genetic skeletal disorders: 2019 revision. American Journal of Medical Genetics Part A, 179(12), 2393–2419. https://doi.org/10.1002/ajmg.a.61366

Murali, C. N., McDonald-McGinn, D. M., Wenger, T. L., McDougall, C., Stroup, B. M., Sheppard, S. E., et al. (2019). Muenke syndrome: Medical and surgical comorbidities and long-term management. American Journal of Medical Genetics Part A, 179(8), 1442–1450. https://doi.org/10.1002/ajmg.a.61199

Nguyen, N.-L., Ngoc, C. T. B., Vu, C. D., Nguyen, T. T. H., & Nguyen, H. H. (2020). Whole exome sequencing as a diagnostic tool for unidentified muscular dystrophy in a Vietnamese family. Diagnostics (Basel, Switzerland), 10(10), 741. https://doi.org/10.3390/diagnostics10100741

Pauli, R. M. (2019). Achondroplasia: A comprehensive clinical review. Orphanet Journal of Rare Diseases, 14(1), 1–1. https://doi.org/10.1186/s13023-018-0972-6

Prinos, P., Costa, T., Sommer, A., Kilpatrick, M. W., & Tsipouras, P. (1995). A common FGFR3 gene mutation in hypochondroplasia. Human Molecular Genetics, 4(11), 2097–2101. https://doi.org/10.1093/hmg/4.11.2097

Raffioni, S., Zhu, Y. Z., Bradshaw, R. A., & Thompson, L. M. (1998). Effect of transmembrane and kinase domain mutations on fibroblast growth factor receptor 3 chimera signaling in PC12 cells. A model for the control of receptor tyrosine kinase activation. The Journal of Biological Chemistry, 273(52), 35250–35259. https://doi.org/10.1074/jbc.273.52.35250

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 17(5), 405–424. https://doi.org/10.1038/gim.2015.30

Savarirayan, R., Ireland, P., Irving, M., Thompson, D., Alves, I., Baratela, W. A. R., et al. (2022). International Consensus Statement on the diagnosis, multidisciplinary management and lifelong care of individuals with achondroplasia. Nature Reviews. Endocrinology, 18(3), 173–189. https://doi.org/10.1038/s41574-021-00595-x

Shiang, R., Thompson, L. M., Zhu, Y. Z., Church, D. M., Fielder, T. J., Bocian, M., Winokur, S. T., et al. (1994). Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell, 78(2), 335–342. https://doi.org/10.1016/0092-8674(94)90302-6

Steinhaus, R., Proft, S., Schuelke, M., Cooper, D. N., Schwarz, J. M., & Seelow, D. (2021). MutationTaster2021. Nucleic Acids Research, 49(W1), W446–W451. https://doi.org/10.1093/nar/gkab266

Talebi, F., Ghanbari Mardasi, F., Mohammadi Asl, J., Bavarsad, A. H., & Tizno, S. (2017). Identification of a novel missence mutation in FGFR3 gene in an Iranian family with LADD syndrome by Next-Generation Sequencing. International Journal of Pediatric Otorhinolaryngology, 97, 192–196. https://doi.org/10.1016/j.ijporl.2017.04.016

Toydemir, R. M., Brassington, A. E., Bayrak-Toydemir, P., Krakowiak, P. A., Jorde, L. B., Whitby, F. G., et al. (2006). A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. The American Journal of Human Genetics, 79(5), 935–941. https://doi.org/10.1086/508433

Wilkes, D., Rutland, P., Pulleyn, L. J., Reardon, W., Moss, C., Ellis, J. P., et al. (1996). A recurrent mutation, ala391glu, in the transmembrane region of FGFR3 causes Crouzon syndrome and acanthosis nigricans. Journal of Medical Genetics, 33(9), 744–748. https://doi.org/10.1136/jmg.33.9.744

Xue, Y., Sun, A., Mekikian, P. B., Martin, J., Rimoin, D. L., Lachman, R. S., et al. (2014). FGFR3 mutation frequency in 324 cases from the International Skeletal Dysplasia Registry. Molecular Genetics & Genomic Medicine, 2(6), 497–503. https://doi.org/10.1002/mgg3.96

Downloads

Published

30-03-2025

How to Cite

Nguyen, D. T., Nguyen, T. T. N., Nguyen, N. L., Tran, T. A. T., Can, T. B. N., Vu, C. D., Nguyen, V. T., Nguyen, T. K. L., Nguyen, T. H., Nguyen, D. Q., Tran, T. H. G., Phan, K. L., & Nguyen, H. H. (2025). Whole exome sequencing identified a pathogenic variant c.1620C>G in the <i> FGFR3 </i> gene in a Vietnamese patient. Vietnam Journal of Biotechnology, 23(1), 13–23. https://doi.org/10.15625/vjbt-22379

Issue

Section

Articles

Funding data

Most read articles by the same author(s)