Investigation of the effects of Huyet Rong germinated red rice on gene expression in diabetic mouse
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-21736Keywords:
Diabetes mellitus, Huyet Rong, Mus musculus, germinated red rice, RT-qPCR analysisAbstract
Diabetes mellitus is an autoimmune disease that causes hyperglycemia due to the destruction of pancreatic beta cells and deficiency in insulin synthesis. Rates of diabetes increased from 2.7% in 2002 to 5.4% in 2012 and 7.3% in 2020, making it the 7th most leading cause of death in Vietnam. Many studies have shown that dietary change can help alleviate the disease symptoms via improving metabolic control, dyslipidemia, and oxidative stress levels. Huyet Rong red rice, a domesticated rice cultivar rich in vitamins, essential trace elements, antioxidant polyphenols, fiber and a low glycemic index in nature, has become an attractive diet for patients with diabetes. For these reasons, this study aims to investigate the effects of Huyet Rong germinated red rice on the expression of diabetic associated genes, GLUT-2, GLUT-4, IR, IRS1, NFKB1, and GSK-3, in diabetic mouse models using the RT-qPCR method. Our findings reveal that the germination process has significantly increased the level of antioxidant agents, g-oryzanol and g-aminobutyric acid, in Huyet Rong red rice grains, rising by 1.2 and 15.1 folds, respectively. RT-qPCR analysis also reveals that the diet supplemented with germinated Huyet Rong red rice flour possesses some positive effects on the STZ-induced mice via increasing the expression of GLUT2, NFKB1, IRS1, and GSK-3 that are involved in glucose transportation, insulin signaling, and inflammatory and oxidative responses.
Downloads
References
Akinlade O. M., Owoyele B. V. and Soladoye A. O. (2021). Streptozotocin-induced type 1 and 2 diabetes in rodents: a model for studying diabetic cardiac autonomic neuropathy. Afr Health Sci, Makerere Medical School. 21: 719-727. http://doi.org/10.4314/ahs.v21i2.30
Boue S. M., Daigle K. W., Chen M. H., Cao H. and Heiman M. L. (2016). Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts. J Agric Food Chem. 64: 5345-5353. http://doi.org/10.1021/acs.jafc.6b01909
Briscoe V. (2006). Hypoglycemia in type 1 and type 2 diabetes: physiology, pathophysiology, and management. Clin Diabetes. 24: 115-121. http://doi.org/10.2337/diaclin.24.3.115
Chadt A. and Al-Hasani H. (2020). Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Euro J Physiol. 472: 1273-1298. http://doi.org/10.1007/s00424-020-02417-x
David-Silva A., Freitas H. S., Okamoto M. M., Sabino-Silva R., Schaan B. D. and Machado U. F. (2013). Hepatocyte nuclear factors 1α/4α and forkhead box A2 regulate the solute carrier 2A2 (Slc2a2) gene expression in the liver and kidney of diabetic rats. Life Sci. 93: 805-813. http://doi.org/10.1016/j.lfs.2013.10.011
Eizirik D. L., Pasquali L. and Cnop M. (2020). Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 16: 349-362. http://doi.org/10.1038/s41574-020-0355-7
Eldar-Finkelman H. and Krebs E. G. (1997). Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proceed Nat Acad Sci. 94: 9660-9664. http://doi.org/doi:10.1073/pnas.94.18.9660
He M. Q., Wang J. Y., Wang Y., Sui J., Zhang M., Ding X., Zhao Y., Chen Z. Y., Ren X. X. and Shi B. Y. (2020). High-fat diet-induced adipose tissue expansion occurs prior to insulin resistance in C57BL/6J mice. Chronic Dis Transl Med. 6: 198-207. http://doi.org/10.1016/j.cdtm.2020.06.003
Heydemann A. (2016). An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res. 2016: 2902351. http://doi.org/10.1155/2016/2902351
Imam M. U., Azmi N. H., Bhanger M. I., Ismail N. and Ismail M. (2012). Antidiabetic properties of germinated brown rice: a systematic review. I. M. Liu. Evid Based Complementary Altern Med, Hindawi Publishing Corporation. 2012: 816501. http://doi.org/10.1155/2012/816501
Klak M., Gomółka M., Kowalska P., Cichoń J., Ambrożkiewicz F., Serwańska-Świętek M., Berman A. and Wszoła M. (2020). Type 1 diabetes: genes associated with disease development. Cent Eur J Immunol. 45: 439-453. http://doi.org/10.5114/ceji.2020.103386
Lee Y., Lee S., Jang G., Lee Y., Kim M., Kim Y. I., Lee J. and Jeong H. (2019). Antioxidative and antidiabetic effects of germinated rough rice extract in 3T3-L1 adipocytes and C57BLKS/J-db/db mice. Food Nutr Res. 63: 1-10. http://doi.org/10.29219/fnr.v63.3603
Livak K. J. and Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 25: 402-408. http://doi.org/10.1006/meth.2001.1262
Lu H., Lei X. and Zhang Q. (2015). Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis. BMC Gastroenterol. 15: 94-108. http://doi.org/10.1186/s12876-015-0325-z
Marks J., Carvou N. J., Debnam E. S., Srai S. K. and Unwin R. J. (2003). Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol. 553: 137-145. http://doi.org/10.1113/jphysiol.2003.046268
Marushchak M. and Krynytska I. (2021). Insulin receptor substrate 1 gene and glucose metabolism characteristics in type 2 diabetes mellitus with comorbidities. Ethiop J Health Sci. 31: 1001-1010. http://doi.org/10.4314/ejhs.v31i5.12
Masuzaki H., Kozuka C., Okamoto S., Yonamine M., Tanaka H. and Shimabukuro M. (2019). Brown rice-specific γ-oryzanol as a promising prophylactic avenue to protect against diabetes mellitus and obesity in humans. J Diabetes Investig. 10: 18-25. http://doi.org/10.1111/jdi.12892
Matoušková P., Bártíková H., Boušová I., Hanušová V., Szotáková B. and Skálová L. (2014). Reference genes for real-time PCR quantification of Messenger RNAs and microRNAs in mouse model of obesity. PLOS ONE, Public Library of Science. 9: e86033. http://doi.org/10.1371/journal.pone.0086033
Meyerovich K., Ortis F. and Cardozo A. K. (2018). The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes. J Mol Endocrinol. 61: 1-6. http://doi.org/10.1530/jme-16-0183
Moongngarm A., Moontree T., Deedpinrum P. and Padtong K. (2014). Functional properties of brown rice flour as affected by germination. APCBEE Procedia. 8: 1-6. http://doi.org/10.1016/j.apcbee.2014.01.077
Ngoc N. B., Lin Z. L. and Ahmed W. (2020). Diabetes: What challenges lie ahead for Vietnam? Ann Glob Health. 86: 1-9. http://doi.org/10.5334/aogh.2526
Nguyen N. T. L., Nguyen B. D. T., Dai T. T. X., Co S. H., Do T. T., Tong Thi A. N., Oladapo I. J. and Nguyen Cong H. (2021). Influence of germinated brown rice-based flour modified by MAse on type 2 diabetic mice and HepG2 cell cytotoxic capacity. Food Sci Nutr. 9: 781-793. http://doi.org/10.1002/fsn3.2043
Prasad B. J., Sharavanan P. S. and Sivaraj R. (2019). Efficiency of Oryza punctata extract on glucose regulation: Inhibition of α-amylase and α-glucosidase activities. Grain Oil Sci Technol. 2: 44-48. http://doi.org/10.1016/j.gaost.2019.04.007
Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A. A., Ogurtsova K., Shaw J. E., Bright D. and Williams R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 157: e107843. http://doi.org/10.1016/j.diabres.2019.107843
Secio-Silva A., Emrich F., Evangelista-Silva P. H., Prates R. P., Hijo A. H. T., Figueira-Costa T. N., Schaeffer M., Goulart-Silva F., Peliciari-Garcia R. A. and Bargi-Souza P. (2023). Which housekeeping gene is the best choice for RT-qPCR analysis in mice fed with a high-fat diet? Studies in the liver, kidney, pancreas, and intestines. Gene Reports. 31: 101756. http://doi.org/10.1016/j.genrep.2023.101756
Shen K. P., Hao C. L., Yen H. W., Chen C. Y., Wu B. N. and Lin H. L. (2015). Pre-germinated brown rice prevents high-fat diet induced hyperglycemia through elevated insulin secretion and glucose metabolism pathway in C57BL/6J strain mice. J Clin Biochem Nutr. 56: 28-34. http://doi.org/10.3164/jcbn.14-50
Shen Z., Hou Y., Zhao G., Tan L., Chen J., Dong Z., Ni C. and Pei L. (2024). Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus. Heliyon. 10: e25459. http://doi.org/10.1016/j.heliyon.2024.e25459
Sitanggang A. B., Joshua M., Munarko H., Kusnandar F. and Budijanto S. (2021). Increased γ-aminobutyric acid content of germinated brown rice produced in membrane reactor. Food Technol Biotechnol. 59: 295-305. http://doi.org/10.17113/ftb.59.03.21.6846
Skovsø S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig. 5: 349-358. http://doi.org/10.1111/jdi.12235
Tantiwong P., Shanmugasundaram K., Monroy A., Ghosh S., Li M., DeFronzo R. A., Cersosimo E., Sriwijitkamol A., Mohan S. and Musi N. (2010). NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol Endocrinol Metab. 299: 794-801. http://doi.org/10.1152/ajpendo.00776.2009
Teli D. M. and Gajjar A. K. (2023). Glycogen synthase kinase-3: A potential target for diabetes. Bioorg Med Chem. 92: 117406. http://doi.org/10.1016/j.bmc.2023.117406
Tsou S.-F., Hsu H.-Y. and Chen S.-D. (2024). Effects of different pretreatments on the GABA content of germinated brown rice. Appl Sci. 14: 5771-5784.
Wang L., Li J. and Di L.-J. (2022). Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev. 42: 946-982. http://doi.org/10.1002/med.21867
Weng X., Sun M., Gao H., Liu Z., Huang J., Liao X. and Shen G. (2019). Germinated brown rice, a whole grain with health benefits for common chronic diseases. Nutr Food Sci J. 2: 119-136.
Zhang S., Chen S., He K., Liu J., Su X., Li W., Ma J., Cheng C., Ouyang R., Mu Y., Zheng L., Cai J., Feng Y., Zeng F., Peng L. and Ye Y. (2023). The interaction of dietary patterns and genetic variants on the risk of cardiovascular diseases in Chinese patients with type 2 diabetes. Mol Nutr Food Res. 67: 2300332-2300344. http://doi.org/10.1002/mnfr.202300332
Downloads
Published
How to Cite
Issue
Section
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐHGBH.01/23-25