CRISPR/Cas9-Induced mutations of chNHE1 gene in chicken primordial germ cells
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-21295Keywords:
NHE1, CRISPR/Cas9, chicken, Avian leukosisAbstract
In recent years, CRISPR/Cas9 technology has been extensively applied in gene editing research across plants as well as animal subjects, making it an effective tool in aiding the investigation of interactions between pathogens and hosts. Avian leukosis virus subgroup J (ALV-J) is the first known virus-related tumor disease causing avian leukosis, which can lead to major economic losses due to decreased productivity and increased mortality in infected chicken flocks. This poses a significant threat to the poultry industry worldwide, including Vietnam, as ALV-J is considered one of the most difficult pathogens to control. ALV-J infects the host cells by the meditation of the chicken NA+/H+ exchange type 1 (chNHE1) receptor. In this study, a CRISPR/Cas9 construct was developed and successfully delivered into the primordial germ cells of H'Mong-Vietnamese chickens. The insertion and expression of the transgenes in chicken cells were demonstrated by GFP expression and PCR with specific primers. The CRISPR/Cas9 induced mutations in the target gene chNHE1 were identified and characterized via ICE analysis (Synthego). The knockout score was indicated at 23 points from one of three tested cell batches. Various induced mutations were observed at the target locations, indicating the presence of different mutant cell lines in the tested cell batch. This is the first success in utilizing the CRISPR/Cas9 system to induce targeted mutations of the chNHE1 gene in the primordial germ cells of a local chicken variety in Vietnam. Our results provide a potential approach for further research to enhance the poultry health and productivity of local livestock.
Downloads
References
Atimango, A. O., Wesana, J., Kalule, S. W., Verbeke, W., & De Steur, H. (2024). Genome editing in food and agriculture: From regulations to consumer perspectives. Current Opinion in Biotechnology, 87, 103127 https://doi.org/10.1016/j.copbio.2024.103127
Chai, N., & Bates, P. (2006). Na + /H + exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proceedings of the National Academy of Sciences, 103(14), 5531–5536. https://doi.org/10.1073/pnas.0509785103
Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K., Enzmann, B. L., & Stoner, R. (2022). Inference of CRISPR Edits from Sanger Trace Data. The CRISPR Journal, 5(1), 123–130. https://doi.org/10.1089/crispr.2021.0113
Fiorilla, E., Gariglio, M., Martinez-Miro, S., Rosique, C., Madrid, J., Montalban, A., Biasato, I., Bongiorno, V., Cappone, E. E., Soglia, D., & Schiavone, A. (2024). Improving sustainability in autochthonous slow-growing chicken farming: Exploring new frontiers through the use of alternative dietary proteins. Journal of Cleaner Production, 434, 140041. https://doi.org/10.1016/j.jclepro.2023.140041
Harvey, A. J., Speksnijder, G., Baugh, L. R., Morris, J. A., & Ivarie, R. (2002). Consistent Production of Transgenic Chickens Using Replication-Deficient Retroviral Vectors and High-Throughput Screening Procedures. Poultry Science, 81(2), 202–212. https://doi.org/10.1093/ps/81.2.202
Idoko-Akoh, A., Goldhill, D. H., Sheppard, C. M., Bialy, D., Quantrill, J. L., Sukhova, K., Brown, J. C., Richardson, S., Campbell, C., Taylor, L., Sherman, A., Nazki, S., Long, J. S., Skinner, M. A., Shelton, H., Sang, H. M., Barclay, W. S., & McGrew, M. J. (2023). Creating resistance to avian influenza infection through genome editing of the ANP32 gene family. Nature Communications, 14(1), 6136. https://doi.org/10.1038/s41467-023-41476-3
Ivarie, R. (2003). Avian transgenesis: Progress towards the promise. Trends in Biotechnology, 21(1), 14–19. https://doi.org/10.1016/S0167-7799(02)00009-4
Ji, M., Guan, W., Gao, Y., Li, L., Bai, C., Ma, Y., & Li, X. (2016). Cultivation and Biological Characterization of Chicken Primordial Germ Cells. Brazilian Archives of Biology and Technology, 59, e16150374. https://doi.org/10.1590/1678-4324-2016150374
Khwatenge, C. N., & Nahashon, S. N. (2021). Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species. Frontiers in Genetics, 12, 627714. https://doi.org/10.3389/fgene.2021.627714
Lee, H. J., Lee, K. Y., Jung, K. M., Park, K. J., Lee, K. O., Suh, J.-Y., Yao, Y., Nair, V., & Han, J. Y. (2017). Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). Developmental & Comparative Immunology, 77, 340–349. https://doi.org/10.1016/j.dci.2017.09.006
Li, H., Tan, M., Zhang, F., Ji, H., Zeng, Y., Yang, Q., Tan, J., Huang, J., Su, Q., Huang, Y., & Kang, Z. (2021). Diversity of Avian leukosis virus subgroup J in local chickens, Jiangxi, China. Scientific Reports, 11(1), 4797. https://doi.org/10.1038/s41598-021-84189-7
Love, J., Gribbin, C., Mather, C., & Sang, H. (1994). Transgenic Birds by DNA Microinjection. Bio/Technology, 12(1), 60–63. https://doi.org/10.1038/nbt0194-60
Luo, H., Zhou, H., Jiang, S., He, C., Xu, K., Ding, J., Liu, J., Qin, C., Chen, K., Zhou, W., Wang, L., Yang, W., Zhu, W., & Meng, H. (2023). Gene Expression Profiling Reveals Potential Players of Sex Determination and Asymmetrical Development in Chicken Embryo Gonads. International Journal of Molecular Sciences, 24(19), 14597. https://doi.org/10.3390/ijms241914597
McGrew, M. J., Sherman, A., Ellard, F. M., Lillico, S. G., Gilhooley, H. J., Kingsman, A. J., Mitrophanous, K. A., & Sang, H. (2004). Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports, 5(7), 728–733. https://doi.org/10.1038/sj.embor.7400171
Negash, F., Tadesse, Y., & Getachew, A. (2021). Genomic Selection for Poultry Breeding and its Potential Applications in Developing Countries (Review). Poultry Science Journal, 9(2),133-145. https://doi.org/10.22069/psj.2021.18778.1664
Oishi, I., Yoshii, K., Miyahara, D., Kagami, H., & Tagami, T. (2016). Targeted mutagenesis in chicken using CRISPR/Cas9 system. Scientific Reports, 6(1), 23980. https://doi.org/10.1038/srep23980
Park, T. S., Lee, H. J., Kim, K. H., Kim, J.-S., & Han, J. Y. (2014). Targeted gene knockout in chickens mediated by TALENs. Proceedings of the National Academy of Sciences, 111(35), 12716–12721. https://doi.org/10.1073/pnas.1410555111
Payne, L. N., & Nair, V. (2012). The long view: 40 years of avian leukosis research. Avian Pathology, 41(1), 11–19. https://doi.org/10.1080/03079457.2011.646237
Sang, H. (2004). Prospects for transgenesis in the chick. Mechanisms of Development, 121(9), 1179–1186. https://doi.org/10.1016/j.mod.2004.05.012
Van De Lavoir, M.-C., Diamond, J. H., Leighton, P. A., Mather-Love, C., Heyer, B. S., Bradshaw, R., Kerchner, A., Hooi, L. T., Gessaro, T. M., Swanberg, S. E., Delany, M. E., & Etches, R. J. (2006). Germline transmission of genetically modified primordial germ cells. Nature, 441(7094), 766–769. https://doi.org/10.1038/nature04831
Wu, H.-J., Landshammer, A., Stamenova, E. K., Bolondi, A., Kretzmer, H., Meissner, A., & Michor, F. (2021). Topological isolation of developmental regulators in mammalian genomes. Nature Communications, 12(1), 4897. https://doi.org/10.1038/s41467-021-24951-7
Zhu, L., Van De Lavoir, M.-C., Albanese, J., Beenhouwer, D. O., Cardarelli, P. M., Cuison, S., Deng, D. F., Deshpande, S., Diamond, J. H., Green, L., Halk, E. L., Heyer, B. S., Kay, R. M., Kerchner, A., Leighton, P. A., Mather, C. M., Morrison, S. L., Nikolov, Z. L., Passmore, D. B., … Etches, R. J. (2005). Production of human monoclonal antibody in eggs of chimeric chickens. Nature Biotechnology, 23(9), 1159–1169. https://doi.org/10.1038/nbt1132
Downloads
Published
How to Cite
Issue
Section
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers VAST02.02/22-23