Trends in biotechnology: Vibrio natriegens as potential micro-factory for valorization of crustacean waste

Nguyen Thanh Hung, Tran Thi Van Anh, Dam Thuy Hang, Pham Tuan Anh, Le Thanh Ha, Le Tuan
Author affiliations

Authors

  • Nguyen Thanh Hung School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Vietnam
  • Tran Thi Van Anh School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Vietnam
  • Dam Thuy Hang School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Vietnam
  • Pham Tuan Anh School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Vietnam
  • Le Thanh Ha School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Vietnam
  • Le Tuan School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/21070

Keywords:

Vibrio natriegens, crustacean waste, chitin monomers, salt tolerance, trend in biotechnology.

Abstract

Vibrio natriegens has recently been identified as a promising host for the biotechnology industry thanks to its inherent qualities, which include its fast growth rate, non-pathogenicity to humans, and versatility in using substrates. These advantages have led to the potential use of V. natriegens in the biosynthesis of several products. Basically, the industrial scale requires fermentation or cultivation processes to be conducted at high substrate or biomass concentrations to maximize the final retrieved product. However, studies on V. natriegens at high cell density are limited. Besides, the potential of V. natriegens to convert recalcitrant substrates such as chitin derivatives into biological products has not yet been understood. This review summarizes up-to-date information on the physiological characteristics, metabolism, genome, and genetic modification tools of V. natriegens. Subsequentially, statistics and analysis of research trends related to V. natriegens was presented. Finally, a discussion on the role of V. natriegens in converting chitin waste from the seafood processing industry into a culturing feedstock to achieve a circular economy and net zero emissions was provided.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Acosta N., Jiménez C., Borau V., Heras A., 1993. Extraction and characterization of chitin from crustaceans. Biomass and Bioenergy, 5(2): 145–153. https://doi.org/ 10.1016/0961-9534(93)90096-M

Aiyar S. E., Gaal T., Gourse R. L., 2002. rRNA promoter activity in the fast-growing bacterium Vibrio natriegens. Journal of Bacteriology, 184(5): 1349–1358. https://doi.org/10.1128/jb.184.5.1349-1358.2002

Alvarez-Anorve L. I., Calcagno M. L., Plumbridge J., 2005. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. Journal of Bacteriology, 187(9): 2974–2982. https://doi.org/10.1128/jb.187.9.2974-2982.2005

Banerjee D., Eng T., Lau A. K., Sasaki Y., Wang B., Chen Y., Prahl J.-P., Singan V. R., Herbert R. A., Liu Y., Tanjore D., Petzold C. J., Keasling J. D., Mukhopadhyay A., 2020. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nature Communications, 11(1): 5385. https://doi.org/10.1038/s41467-020-19171-4

Bao J., Liu N., Zhu L., Xu Q., Huang H., Jiang L., 2018. Programming a biofilm-mediated multienzyme-assembly-cascade system for the biocatalytic production of glucosamine from chitin. Journal of Agricultural and Food Chemistry, 66(30): 8061–8068. https://doi.org/10.1021/acs. jafc.8b02142

Biener R., Horn T., Komitakis A., Schendel I., König L., Hauenstein A., Ludl A., Speidel A., Schmid S., Weißer J., Broßmann M., Kern S., Kronmüller M., Vierkorn S., Suckow L., Braun A., 2023. High-cell-density cultivation of Vibrio natriegens in a low-chloride chemically defined medium. Applied Microbiology and Biotechnology, 107(23): 7043–7054. https://doi.org/ 10.1007/s00253-023-12799-4

Biswas R., Yamaoka M., Nakayama H., Kondo T., Yoshida K.-i., Bisaria V. S., Kondo A., 2012. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Applied Microbiology and Biotechnology, 94(3): 651–658. https://doi.org/10.1007/ s00253-011-3774-5

Broquá J., Zanin B., Flach A., Mallmann C., Taborda F., Machado L., Alves S., Silva M., Dias R., 2019. Methods of chitin production a short review. American Journal of Biomedical Science & Research, 3(4): 307–314. https://doi.org/10.34297/ AJBSR.2019.03.000682

Clark J., Awah A., Moreland R., Liu M., Gill J. J., Ramsey J., 2019. Complete Genome Sequence of Vibrio natriegens Phage Phriendly. Microbiology Resource Announcements, 8(40): 10–1128. https://doi.org/doi:10.1128/mra.01096-19

Conley B. E., Weinstock M. T., Bond D. R., Gralnick J. A., 2020. A hybrid extracellular electron transfer pathway enhances the survival of Vibrio natriegens. Applied and Environmental Microbiology, 86(19): e01253–01220. https://doi.org/10.1128/ AEM.01253-20

Coppens L., Tschirhart T., Leary D. H., Colston S. M., Compton J. R., Hervey W. J., Dana K. L., Vora G. J., Bordel S., Ledesma‐Amaro R., 2023. Vibrio natriegens genom-scale modeling reveals insights into halophilic adaptations and resource allocation. Molecular Systems Biology, 19(4): e10523. https://doi.org/ 10.15252/msb.202110523

Dalia T. N., Yoon S. H., Galli E., Barre F. X., Waters C. M., Dalia A. B., 2017. Enhancing multiplex genome editing by natural transformation (MuGENT) via inactivation of ssDNA exonucleases. Nucleic Acids Research, 45(12): 7527–7537. https://doi.org/10.1093/nar/gkx496

Directorate-of-fisheries, 2023. https://tongcuc-thuysan.gov.vn/vi-vn/tin-tức/-tin-vắn/doc-tin/018432/2023-01-09/tong-san-luong-thuy-san-nam-2022-uoc-dat-tren-9-trieu-tan; accessed 16/08/2023.

Erian A. M., Freitag P., Gibisch M., Pflügl S., 2020. High rate 2, 3-butanediol production with Vibrio natriegens. Bioresource Technology Reports, 10: 100408. https://doi.org/10.1016/j.biteb.2020.100408

Ganjave S. D., Dodia H., Sunder A. V., Madhu S., Wangikar P. P., 2022. High cell density cultivation of E. coli in shake flasks for the production of recombinant proteins. Biotechnology Reports, 33: e00694. https://doi.org/10.1016/j.btre.2021.e00694

Gbenebor O. P., Adeosun S. O., Lawal G. I., Jun S., Olaleye S. A., 2017. Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton. Engineering Science and Technology, an International Journal, 20(3): 1155–1165. https://doi.org/10.1016/ j.jestch.2017.05.002

General-statistics-office-of-Vietnam, 2013–2021. Statistic-Year-Book-of-Vietnam-2013–2021.

Gillett R., 2008. Global study of shrimp fisheries. FAO Fish Tech Pap, 475: 25–29.

Gözaydın G., Song S., Yan N., 2020. Chitin hydrolysis in acidified molten salt hydrates. Green Chemistry, 22(15): 5096–5104. https://doi.org/10.1039/D0GC01464H

Hoff J., Daniel B., Stukenberg D., Thuronyi B. W., Waldminghaus T., Fritz G., 2020. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis. Environmental Microbiology, 22(10): 4394–4408. https://doi.org/10.1111/1462-2920.15128

Hoffart E., Grenz S., Lange J., Nitschel R., Müller F., Schwentner A., Feith A., Lenfers-Lücker M., Takors R., Blombach B., 2017. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Applied and Environmental Microbiology, 83(22): e01614–01617. https://doi.org/10.1128/AEM.01614-17

Huang L., Ni J., Zhong C., Xu P., Dai J., Tang H., 2022. Establishment of a salt-induced bioremediation platform from marine Vibrio natriegens. Communications Biology, 5(1): 1352. https://doi.org/10.1038/s42003-022-04319-3

Hunt D. E., Gevers D., Vahora N. M., Polz M. F., 2008. Conservation of the chitin utilization pathway in the Vibrionaceae. Applied and Environmental Microbiology, 74(1): 44–51. https://doi.org/10.1128/ AEM.01412-07

Jiang W.-X., Li P.-Y., Chen X.-L., Zhang Y.-S., Wang J.-P., Wang Y.-J., Sheng Q., Sun Z.-Z., Qin Q.-L., Ren X.-B., 2022. A pathway for chitin oxidation in marine bacteria. Nature Communications, 13(1): 5899.

Kan K., Chen J., Kawamura S., Koseki S., 2018. Characteristics of d-tryptophan as an antibacterial agent: effect of sodium chloride concentration and temperature on Escherichia coli growth inhibition. Journal of Food Protection, 81(1): 25–30. https://doi.org/10.4315/0362-028X.JFP-17-229

Keyhani N. O., Li X.-B., Roseman S. J. J. o. B. C., 2000. Chitin catabolism in the marine bacterium Vibrio furnissii: identification and molecular cloning of a chitoporin. Journal of Biological Chemistry, 275(42): 33068–33076. https://doi.org/10.1074/jbc.M001041200

Kulkarni R., 2016. Biological Art of Producing Useful Chemicals. Resonance: 233–237.

Le Roux F., Blokesch M., 2018. Eco-evolutionary dynamics linked to horizontal gene transfer in Vibrios. Annual review of microbiology, 72(1): 89–110.

Le T., Nguyen T. H., Nguyen T. V., Vu T. K. O., Pham T. A., Le T. H., 2023. Evaluation of the growth of Vibrio natriegens strains in a medium containing chitin derivatives and shrimp shell hydrolysate. Academia Journal of Biology, 45(4): 73–82. https://doi.org/10.15625/2615-9023/18777

Le T., Vu T. K. O., Nguyen T. L., Nguyen T. V., Cao T. H. T., Le T. H., 2022. Growth characteristics on chitin monomer of Vibrio natriegens N5.3 isolated from vietnamese seawater. Proceedings of Vietnam national conference on biotechnology 2022.

Lee H. H., Ostrov N., Gold M. A., Church G. M., 2017. Recombineering in Vibrio natriegens. BioRxiv: 130088. https://doi.org/ 10.1101/130088

Lee H. H., Ostrov N., Wong B. G., Gold M. A., Khalil A. S., Church G. M., 2016. Vibrio natriegens, a new genomic powerhouse. BioRxiv: 058487. https://doi.org/10.1101/ 058487

Lee H. H., Ostrov N., Wong B. G., Gold M. A., Khalil A. S., Church G. M., 2019. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nature Microbiology, 4(7): 1105–1113. https://doi.org/10.1038/s41564-019-0423-8

Lee J. H., Lama S., Kim J. R., Park S. H., 2018. Production of 1,3-propanediol from glucose by recombinant Escherichia coli BL21(DE3). Biotechnology and Bioprocess Engineering, 23(2): 250–258. https://doi.org/10.1007/s12257-018-0017-y

Li T., Menegatti S., Crook N. C., 2023. Breakdown of polyethylene therepthalate microplastics under saltwater conditions using engineered Vibrio natriegens. AIChE Journal, 69(12): e18228. https://doi.org/10.1002/aic.18228

Li X., Liang Y., Wang Z., Yao Y., Chen X., Shao A., Lu L., Dang H., 2022. Isolation and characterization of a novel Vibrio natriegens -infecting phage and its potential therapeutic application in abalone aquaculture. Biology, 11(11): 1670.

Liu L., Liu Y., Shin H.-d., Chen R., Li J., Du G., Chen J., 2013. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Applied Microbiology and Biotechnology, 97(14): 6149–6158. https://doi.org/10.1007/s00253-013-4995-6

Liu X., Han X., Peng Y., Tan C., Wang J., Xue H., Xu P., Tao F., 2022. Rapid production of l‐DOPA by Vibrio natriegens, an emerging next‐generation whole‐cell catalysis chassis. Microbial Biotechnology, 15(5): 1610–1621. https://doi.org/10.1111/1751-7915.14001

Long C. P., Gonzalez J. E., Cipolla R. M., Antoniewicz M. R., 2017. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metabolic Engineering, 44: 191–197. https://doi.org/10.1016/j.ymben.2017. 10.008

Mekasha S., Tuveng T. R., Askarian F., Choudhary S., Schmidt-Dannert C., Niebisch A., Modregger J., Vaaje-Kolstad G., Eijsink V. G., 2020. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. Journal of Biological Chemistry, 295(27): 9134–9146.

Meng W., Zhang Y., Ma L., Lü C., Xu P., Ma C., Gao C., 2022. Non-sterilized fermentation of 2, 3-butanediol with seawater by metabolic engineered fast-growing Vibrio natriegens. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.955097

Ministry-of-Industry-and-Trade, 2019. Utilizing by-products of Vietnam's shrimp industry earns hundreds of billions each year. https://moit.gov.vn/tu-hao-hang-viet-nam/tan-dung-phu-pham-nganh-tom-viet-nam-thu-duoc-tram-ty-moi-na.html; accessed 16/08/2023.

Mohan K., Ganesan A. R., Ezhilarasi P., Kondamareddy K. K., Rajan D. K., Sathishkumar P., Rajarajeswaran J., Conterno L., 2022. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydrate Polymers, 287: 119349. https://doi.org/ 10.1016/j.carbpol.2022.119349

Moye Z. D., Burne R. A., Zeng L., 2014. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans. Applied and Environmental Microbiology, 80(16): 5053–5067. https://doi.org/10.1128/AEM.00820-14

No H. K., Meyers S. P., 1995. Preparation and characterization of chitin and chitosan—a review. Journal of Aquatic Food Product Technology, 4(2): 27–52. https://doi.org/ 10.1300/J030v04n02_03

Oliver J. D., 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews, 34(4): 415–425. https://doi.org/10.1111/ j.1574-6976.2009.00200.x

Örencik C., Müller S., Kirner T., Amann E., 2019. An analysis and optimization of growth condition requirements of the fast-growing bacterium Vibrio natriegens. bioRxiv: 775437. https://doi.org/10.1101/ 775437

Pachapur V. L., Guemiza K., Rouissi T., Sarma S. J., Brar S. K., 2016. Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. Journal of Chemical Technology & Biotechnology, 91(8): 2331–2339. https://doi.org/10.1002/jctb.4821

Payne W. J., 1958. Studies on bacterial utilization of uronic acids III: induction of oxidative enzymes in a marine isolate. Journal of bacteriology, 76(3): 301–307. https://doi.org/10.1128/jb.76.3.301-307.1958

Payne W. J., 1960. Effects of sodium and potassium ions on growth and substrate penetration of a marine pseudomonad. Journal of Bacteriology, 80(5): 696–700. https://doi.org/10.1128/jb.80.5.696-700.1960

Payne W. J., Eagon R. G., Williams A. K., 1961. Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie Van Leeuwenhoek, 27(1): 121–128. https://doi.org/10.1007/BF02538432

Pfeifer E., Michniewski S., Gätgens C., Münch E., Müller F., Polen T., Millard A., Blombach B., Frunzke J., 2019. Generation of a prophage-free variant of the fast-growing bacterium Vibrio natriegens. Applied and Environmental Microbiology, 85(17): e00853–00819. https://doi.org/ 10.1128/AEM.00853-19

Quax T. E., Claassens N. J., Söll D., van der Oost J., 2015. Codon bias as a means to fine-tune gene expression. Molecular Cell, 59(2): 149–161. https://doi.org/10.1016/ j.molcel.2015.05.035

Salomon D., Gonzalez H., Updegraff B. L., Orth K., 2013. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PloS one, 8(4): e61086. https://doi.org/ 10.1371/journal.pone.0061086

Schoch T., Baur T., Kunz J., Stöferle S., Dürre P., 2023. Heterologous 1,3-propanediol production using different recombinant Clostridium beijerinckii DSM 6423 strains. Microorganisms, 11(3): 784.

Shahidi F., Arachchi J. K. V., Jeon Y.-J., 1999. Food applications of chitin and chitosans. Trends in Food Science & Technology, 10(2): 37–51. https://doi.org/10.1016/ S0924-2244(99)00017-5

Smith A. D., Tschirhart T., Compton J., Hennessa T. M., VanArsdale E., Wang Z., 2023. Rapid, high-titer biosynthesis of melanin using the marine bacterium Vibrio natriegens. Frontiers in bioengineering and biotechnology, 11: 1239756. https://doi.org/10.3389/fbioe.2023.1239756

Stella R. G., Baumann P., Lorke S., Münstermann F., Wirtz A., Wiechert J., Marienhagen J., Frunzke J., 2021. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metabolic Engineering Communications, 13: e00187. https://doi.org/10.1016/j.mec. 2021.e00187

Stukenberg D., Hensel T., Hoff J., Daniel B., Inckemann R., Tedeschi J. N., Nousch F., Fritz G., 2021. The Marburg collection: A golden gate DNA assembly framework for synthetic biology applications in Vibrio natriegens. ACS Synthetic Biology, 10(8): 1904–1919. https://doi.org/10.1021/ acssynbio.1c00126

Thiele I., Gutschmann B., Aulich L., Girard M., Neubauer P., Riedel S. L., 2021. High-cell-density fed-batch cultivations of Vibrio natriegens. Biotechnology Letters, 43(9): 1723–1733. https://doi.org/10.1007/s10529 -021-03147-5

Thoma F., Blombach B., 2021. Metabolic engineering of Vibrio natriegens. Essays in Biochemistry, 65(2): 381–392. https://doi.org/10.1042/EBC20200135

Thoma F., Schulze C., Gutierrez-Coto C., Hädrich M., Huber J., Gunkel C., Thoma R., Blombach B., 2022. Metabolic engineering of Vibrio natriegens for anaerobic succinate production. Microbial Biotechnology, 15(6): 1671–1684. https://doi.org/10.1111/1751-7915.13983

Tian J., Deng W., Zhang Z., Xu J., Yang G., Zhao G., Yang S., Jiang W., Gu Y., 2023. Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nature Communications, 14(1): 7758. https://doi.org/10.1038/s41467-023-43631-2

Tschirhart T., Shukla V., Kelly E. E., Schultzhaus Z., NewRingeisen E., Erickson J. S., Wang Z., Garcia W., Curl E., Egbert R. G., Yeung E., Vora G. J., 2019. Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS Synthetic Biology, 8(9): 2069–2079. https://doi.org/10.1021/acssynbio.9b00176

Valle A., Bolívar J., 2021. Escherichia coli, the workhorse cell factory for the production of chemicals. Microbial cell factories engineering for production of biomolecules, Elsevier: 115–137.

VASEP, 2023. Overview on Vietnam shrimp industry. https://seafood.vasep.com.vn/ key-seafood-sectors/shrimp/sector-profile; accessed: 02/05/2024.

Wahyuni S., 2015. Study of colloidal chitin hydrolysis to produce the N acetyl glucosamine from shrimp shell waste using hydrochloric acid and nitric acid. International Symposium on Aquatic Product Processing (ISAPPROSH) 2013.

Wang Z., Tschirhart T., Schultzhaus Z., Kelly E. E., Chen A., Oh E., Nag O., Glaser E. R., Kim E., Lloyd P. F., Charles P. T., Li W., Leary D., Compton J., Phillips D. A., Dhinojwala A., Payne G. F., Vora G. J., 2020. Melanin produced by the fast-growing marine bacterium Vibrio natriegens through heterologous biosynthesis: characterization and application. Applied and Environmental Microbiology, 86(5): e02749–02719. https://doi.org/10.1128/AEM.02749-19

Webb C. D., Payne W. J., 1971. Influence of Na+ on synthesis of macromolecules by a marine bacterium. Applied Microbiology, 21(6): 1080–1088. https://doi.org/ 10.1128/am.21.6.1080-1088.1971

Weinstock M. T., 2018. Genetically engineered Vibrio sp. and uses thereof. International Patent WO2018039639A1.

Weinstock M. T., Hesek E. D., Wilson C. M., Gibson D. G., 2016. Vibrio natriegens as a fast-growing host for molecular biology. Nature Methods, 13(10): 849–851. https://doi.org/10.1038/nmeth.3970

Wiegand D. J., Lee H. H., Ostrov N., Church G. M., 2018. Establishing a cell-free Vibrio natriegens expression system. ACS Synthetic Biology, 7(10): 2475–2479. https://doi.org/10.1021/acssynbio.8b00222

Wu F., Wang S., Peng Y., Guo Y., Wang Q., 2023. Metabolic engineering of fast-growing Vibrio natriegens for efficient pyruvate production. Microbial Cell Factories, 22(1): 172. https://doi.org/ 10.1186/s12934-023-02185-0

Xu J., Dong F., Wu M., Tao R., Yang J., Wu M., Jiang Y., Yang S., Yang L., 2021. Vibrio natriegens as a pET-compatible expression host complementary to Escherichia coli. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021. 627181

Xu J., Yang S., Yang L., 2022. Vibrio natriegens as a host for rapid biotechnology. Trends in Biotechnology, 40(4): 381–384. https://doi.org/10.1016/j.tibtech.2021.10.007

Zhang M., Wang J., Zeng R., Wang D., Wang W., Tong X., Qu W., 2022. Agarose-degrading characteristics of a deep-sea bacterium Vibrio natriegens WPAGA4 and its cold-adapted GH50 agarase Aga3420. Marine Drugs, 20(11): 692. https://doi.org/10.3390/md20110692

Zhang Y., Li Z., Liu Y., Cen X., Liu D., Chen Z., 2021. Systems metabolic engineering of Vibrio natriegens for the production of 1, 3-propanediol. Metabolic Engineering, 65: 52–65. https://doi.org/10.1016/ j.ymben.2021.03.008

Zhong K. X., Chan A. M., Al-Qattan A., Li Y., Suttle C. A., 2023. Complete genome sequence of Vibrio natriegens strain PWH3a. Microbiology Resource Announcements, 12(1): e01108–01122. https://doi.org/10.1128/mra.01108-22

Downloads

Published

27-12-2024

How to Cite

Nguyen, T. H., Tran, T. V. A., Dam, T.-H., Pham, T.-A., Le, T. H., & Le, T. (2024). Trends in biotechnology: <em>Vibrio natriegens</em> as potential micro-factory for valorization of crustacean waste. Academia Journal of Biology, 46(4), 71–89. https://doi.org/10.15625/2615-9023/21070

Issue

Section

Articles

Most read articles by the same author(s)