Evaluation of the growth of \(\textit{Vibrio natriegens}\) strains in a medium containing chitin derivatives and shrimp shell hydrolysate
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/18777Keywords:
Vibrio natriegens, chitin derivatives, glucosamine, N-acetyl glucosamine, shrimp shell hydrolysate, cell growth.Abstract
Chitin from crustacean waste can be the future substrate for bioindustry towards the circular economy concept, especially for countries having large production of sea products like Vietnam. However, the chemical conversion of chitin into monomers implies high amounts of NaCl in a mixture with glucosamine, N-acetyl glucosamine, and acetate. Thus, a bacterial strain that can tolerate high salt concentration, and use chitin monomers as the sole carbon source such as Vibrio natriegens holds great potential in producing bioproducts from chitin derivatives. In this study, V. natriegens strains 10.3 and N5.3 isolated from Vietnam were compared with the reference strain V. natriegens DSM 759 for their growth performances in medium containing separately glucose and chitin monomers. Strain N5.3 showed the best growth rate among the 3 tested strains, exceptionally in medium containing glucosamine with nearly 1.5 times faster than strains 10.3 and DSM 759. Strain N5.3 cultured in bioreactor at 30 g/L NaCl indicated growth rate ranging from 0.614 to 0.881 h-1 in medium containing glucose, glucosamine, N-acetyl glucosamine, and shrimp shell hydrolysate. The formation of acetate was observed during the exponential growth of strain N5.3 in medium with glucose and N-acetyl glucosamine but not in medium with glucosamine or shrimp shell hydrolysate. The faster growth of all tested strains on N-acetyl glucosamine compared to glucosamine suggested metabolism of these substrates of V. natriegens similar to Eescherichia coli.
Downloads
Metrics
References
Alvarez-Añorve L. I., Calcagno M. L., Plumbridge J., 2005. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. Journal of Bacteriology, 187(9): 2974–2982. https://doi.org/ 10.1128/jb.187.9.2974-2982.2005
Arnold N. D., Brück W. M., Garbe D., Brück T. B., 2020. Enzymatic modification of native chitin and conversion to specialty chemical products. Marine Drugs, 18(2): 93. https://doi.org/10.3390/md18020093
Eagon R. G., 1962. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. Journal of Bacteriology, 83(4): 736–737. https://doi.org/10.1128/jb.83.4.736-737.1962
Eagon R. G., Wang C. H., 1962. Dissimilation of glucose and gluconic acid by Pseudomonas natriegens. Journal of Bacteriology, 83(4): 879–886. https://doi.org/10.1128/jb.83.4.879-886.1962
Einbu A., Grasdalen H.,Vårum K. M., 2007. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydrate Research, 342(8): 1055–1062. https://doi.org/https://doi.org/10.1016/j.carres.2007.02.022
Ellis G. A., Tschirhart T., Spangler J., 2019. Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production. Marine Drugs, 17(12). https://doi.org/10.3390/md17120679
Erian A. M., Freitag P., Gibisch M., Pflügl S., 2020. High rate 2,3-butanediol production with Vibrio natriegens. Bioresource Technology Reports, 10: 100408. https://doi.org/10.1016/j.biteb.2020.100408
Hoffart E., Grenz S., Lange J., Nitschel R., Müller F., Schwentner A., Feith A., Lenfers-Lücker M., Takors R., Blombach B., 2017. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Applied and Environmental Microbiology, 83(22). https://doi.org/10.1128/aem.01614-17
Hou F., Ma X., Fan L., Wang D., Ding T., Ye X., Liu D., 2020. Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydrate Polymers, 231: 115669. https://doi.org/10.1016/j.carbpol.2019.115669
Kostag M., El Seoud O. A., 2021. Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review. Carbohydrate Polymer Technologies and Applications, 2: 100079. https://doi.org/10.1016/j.carpta.2021.100079
Lee H. H., Ostrov N., Wong B. G., Gold M. A., Khalil A. S., Church G. M., 2019. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nature Microbiology, 4(7): 1105–1113. https://doi.org/10.1038/s41564-019-0423-8
Li S., You X., Rani A., Özcan E., Sela D. A., 2023. Bifidobacterium infantis utilizes N-acetylglucosamine-containing human milk oligosaccharides as a nitrogen source. Gut Microbes, 15(2): 2244721. https://doi.org/10.1080/19490976.2023.2244721
Long C. P., Gonzalez J. E., Cipolla R. M., Antoniewicz M. R., 2017. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metabolic Engineering, 44: 191–197. https://doi.org/10.1016/j.ymben.2017.10.008
Miller G. L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3): 426−428. https://doi.org/10.1021/ac60147a030.
Payne W. J., 1958. Studies on bacterial utilization of uronic acids. III. Induction of oxidative enzymes in a marine isolate. Journal of Bacteriology, 76(3): 301–307. https://doi.org/10.1128/jb.76.3.301-307.19 58
Peng Y., Han X., Xu P., Tao F., 2020. Next-generation microbial workhorses: Comparative genomic analysis of fast-growing Vibrio strains reveals their biotechnological potential. Biotechnol J, 15(5): e1900499. https://doi.org/10.1002/biot.201900499
Peri K. G., Goldie H., Waygood E. B., 1990. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol, 68(1): 123–137. https://doi.org/10.1139/o90-017
Pfeifer E., Michniewski S., Gätgens C., Münch E., Müller F., Polen T., Millard A., Blombach B., Frunzke J., 2019. Generation of a prophage-free variant of the fast-growing bacterium Vibrio natriegens. Applied and Environmental Microbiology, 85(17): e00853–00819. https://doi.org/10.1128/AEM.00853-19
Schwarz S., Gerlach D., Fan R., Czermak P., 2022. GbpA as a secretion and affinity purification tag for an antimicrobial peptide produced in Vibrio natriegens. Electronic Journal of Biotechnology, 56: 75–83. https://doi.org/10.1016/j.ejbt.2022.01.003
Stella R. G., Baumann P., Lorke S., Münstermann F., Wirtz A., Wiechert J., Marienhagen J., Frunzke J., 2021. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metabolic Engineering Communications, 13: e00187. https://doi.org/10.1016/j.mec.2021.e00187
Thiele I., Gutschmann B., Aulich L., Girard M., Neubauer P., Riedel S. L., 2021. High-cell-density fed-batch cultivations of Vibrio natriegens. Biotechnology Letters, 43(9): 1723–1733. https://doi.org/10.1007/s10529-021-03147-5
Thoma F., Blombach B., 2021. Metabolic engineering of Vibrio natriegens. Essays Biochem, 65(2): 381–392. https://doi.org/10.1042/ebc20200135
Thoma F., Schulze C., Gutierrez-Coto C., Hädrich M., Huber J., Gunkel C., Thoma R., Blombach B., 2022. Metabolic engineering of Vibrio natriegens for anaerobic succinate production. Microb Biotechnol, 15(6): 1671–1684. https://doi.org/10.1111/1751-7915.13983
Wiegand D. J., Lee H. H., Ostrov N., Church G. M., 2018. Establishing a cell-free Vibrio natriegens expression system. ACS Synthetic Biology, 7(10): 2475–2479. https://doi.org/10.1021/acssynbio.8b00222
Zhang Y., Li Z., Liu Y., Cen X., Liu D., Chen Z., 2021. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metabolic Engineering, 65: 52−65. https://doi.org/10.1016/j.ymben.2021.03.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Le Tuan, Nguyen Thanh Hung, Nguyen Tuan Viet, Vu Thi Kieu Oanh, Pham Tuan Anh, Le Thanh Ha
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.