Evaluation of the growth of \(\textit{Vibrio natriegens}\) strains in a medium containing chitin derivatives and shrimp shell hydrolysate

Le Tuan, Nguyen Thanh Hung, Nguyen Tuan Viet, Vu Thi Kieu Oanh, Pham Tuan Anh, Le Thanh Ha
Author affiliations


  • Le Tuan School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, Vietnam
  • Nguyen Thanh Hung School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, Vietnam
  • Nguyen Tuan Viet School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, Vietnam
  • Vu Thi Kieu Oanh School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, Vietnam
  • Pham Tuan Anh School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, Vietnam
  • Le Thanh Ha School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Ha Noi, Vietnam




Vibrio natriegens, chitin derivatives, glucosamine, N-acetyl glucosamine, shrimp shell hydrolysate, cell growth.


Chitin from crustacean waste can be the future substrate for bioindustry towards the circular economy concept, especially for countries having large production of sea products like Vietnam. However, the chemical conversion of chitin into monomers implies high amounts of NaCl in a mixture with glucosamine, N-acetyl glucosamine, and acetate. Thus, a bacterial strain that can tolerate high salt concentration, and use chitin monomers as the sole carbon source such as Vibrio natriegens holds great potential in producing bioproducts from chitin derivatives. In this study, V. natriegens strains 10.3 and N5.3 isolated from Vietnam were compared with the reference strain V. natriegens DSM 759 for their growth performances in medium containing separately glucose and chitin monomers. Strain N5.3 showed the best growth rate among the 3 tested strains, exceptionally in medium containing glucosamine with nearly 1.5 times faster than strains 10.3 and DSM 759. Strain N5.3 cultured in bioreactor at 30 g/L NaCl indicated growth rate ranging from 0.614 to 0.881 h-1 in medium containing glucose, glucosamine, N-acetyl glucosamine, and shrimp shell hydrolysate. The formation of acetate was observed during the exponential growth of strain N5.3 in medium with glucose and N-acetyl glucosamine but not in medium with glucosamine or shrimp shell hydrolysate. The faster growth of all tested strains on N-acetyl glucosamine compared to glucosamine suggested metabolism of these substrates of V. natriegens similar to Eescherichia coli.


Download data is not yet available.


Metrics Loading ...


Alvarez-Añorve L. I., Calcagno M. L., Plumbridge J., 2005. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. Journal of Bacteriology, 187(9): 2974–2982. https://doi.org/ 10.1128/jb.187.9.2974-2982.2005 https://doi.org/ 10.1128/jb.187.9.2974-2982.2005">

Arnold N. D., Brück W. M., Garbe D., Brück T. B., 2020. Enzymatic modification of native chitin and conversion to specialty chemical products. Marine Drugs, 18(2): 93. https://doi.org/10.3390/md18020093 https://doi.org/10.3390/md18020093">

Eagon R. G., 1962. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. Journal of Bacteriology, 83(4): 736–737. https://doi.org/10.1128/jb.83.4.736-737.1962 https://doi.org/10.1128/jb.83.4.736-737.1962">

Eagon R. G., Wang C. H., 1962. Dissimilation of glucose and gluconic acid by Pseudomonas natriegens. Journal of Bacteriology, 83(4): 879–886. https://doi.org/10.1128/jb.83.4.879-886.1962 https://doi.org/10.1128/jb.83.4.879-886.1962">

Einbu A., Grasdalen H.,Vårum K. M., 2007. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydrate Research, 342(8): 1055–1062. https://doi.org/https://doi.org/10.1016/j.carres.2007.02.022 https://doi.org/https://doi.org/10.1016/j.carres.2007.02.022">

Ellis G. A., Tschirhart T., Spangler J., 2019. Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production. Marine Drugs, 17(12). https://doi.org/10.3390/md17120679 https://doi.org/10.3390/md17120679">

Erian A. M., Freitag P., Gibisch M., Pflügl S., 2020. High rate 2,3-butanediol production with Vibrio natriegens. Bioresource Technology Reports, 10: 100408. https://doi.org/10.1016/j.biteb.2020.100408 https://doi.org/10.1016/j.biteb.2020.100408">

Hoffart E., Grenz S., Lange J., Nitschel R., Müller F., Schwentner A., Feith A., Lenfers-Lücker M., Takors R., Blombach B., 2017. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Applied and Environmental Microbiology, 83(22). https://doi.org/10.1128/aem.01614-17 https://doi.org/10.1128/aem.01614-17">

Hou F., Ma X., Fan L., Wang D., Ding T., Ye X., Liu D., 2020. Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydrate Polymers, 231: 115669. https://doi.org/10.1016/j.carbpol.2019.115669 https://doi.org/10.1016/j.carbpol.2019.115669">

Kostag M., El Seoud O. A., 2021. Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review. Carbohydrate Polymer Technologies and Applications, 2: 100079. https://doi.org/10.1016/j.carpta.2021.100079 https://doi.org/10.1016/j.carpta.2021.100079">

Lee H. H., Ostrov N., Wong B. G., Gold M. A., Khalil A. S., Church G. M., 2019. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nature Microbiology, 4(7): 1105–1113. https://doi.org/10.1038/s41564-019-0423-8 https://doi.org/10.1038/s41564-019-0423-8">

Li S., You X., Rani A., Özcan E., Sela D. A., 2023. Bifidobacterium infantis utilizes N-acetylglucosamine-containing human milk oligosaccharides as a nitrogen source. Gut Microbes, 15(2): 2244721. https://doi.org/10.1080/19490976.2023.2244721 https://doi.org/10.1080/19490976.2023.2244721">

Long C. P., Gonzalez J. E., Cipolla R. M., Antoniewicz M. R., 2017. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metabolic Engineering, 44: 191–197. https://doi.org/10.1016/j.ymben.2017.10.008 https://doi.org/10.1016/j.ymben.2017.10.008">

Miller G. L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3): 426−428. https://doi.org/10.1021/ac60147a030. https://doi.org/10.1021/ac60147a030.">

Payne W. J., 1958. Studies on bacterial utilization of uronic acids. III. Induction of oxidative enzymes in a marine isolate. Journal of Bacteriology, 76(3): 301–307. https://doi.org/10.1128/jb.76.3.301-307.19 58 https://doi.org/10.1128/jb.76.3.301-307.19 58">

Peng Y., Han X., Xu P., Tao F., 2020. Next-generation microbial workhorses: Comparative genomic analysis of fast-growing Vibrio strains reveals their biotechnological potential. Biotechnol J, 15(5): e1900499. https://doi.org/10.1002/biot.201900499 https://doi.org/10.1002/biot.201900499">

Peri K. G., Goldie H., Waygood E. B., 1990. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol, 68(1): 123–137. https://doi.org/10.1139/o90-017 https://doi.org/10.1139/o90-017">

Pfeifer E., Michniewski S., Gätgens C., Münch E., Müller F., Polen T., Millard A., Blombach B., Frunzke J., 2019. Generation of a prophage-free variant of the fast-growing bacterium Vibrio natriegens. Applied and Environmental Microbiology, 85(17): e00853–00819. https://doi.org/10.1128/AEM.00853-19 https://doi.org/10.1128/AEM.00853-19">

Schwarz S., Gerlach D., Fan R., Czermak P., 2022. GbpA as a secretion and affinity purification tag for an antimicrobial peptide produced in Vibrio natriegens. Electronic Journal of Biotechnology, 56: 75–83. https://doi.org/10.1016/j.ejbt.2022.01.003 https://doi.org/10.1016/j.ejbt.2022.01.003">

Stella R. G., Baumann P., Lorke S., Münstermann F., Wirtz A., Wiechert J., Marienhagen J., Frunzke J., 2021. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metabolic Engineering Communications, 13: e00187. https://doi.org/10.1016/j.mec.2021.e00187 https://doi.org/10.1016/j.mec.2021.e00187">

Thiele I., Gutschmann B., Aulich L., Girard M., Neubauer P., Riedel S. L., 2021. High-cell-density fed-batch cultivations of Vibrio natriegens. Biotechnology Letters, 43(9): 1723–1733. https://doi.org/10.1007/s10529-021-03147-5 https://doi.org/10.1007/s10529-021-03147-5">

Thoma F., Blombach B., 2021. Metabolic engineering of Vibrio natriegens. Essays Biochem, 65(2): 381–392. https://doi.org/10.1042/ebc20200135 https://doi.org/10.1042/ebc20200135">

Thoma F., Schulze C., Gutierrez-Coto C., Hädrich M., Huber J., Gunkel C., Thoma R., Blombach B., 2022. Metabolic engineering of Vibrio natriegens for anaerobic succinate production. Microb Biotechnol, 15(6): 1671–1684. https://doi.org/10.1111/1751-7915.13983 https://doi.org/10.1111/1751-7915.13983">

Wiegand D. J., Lee H. H., Ostrov N., Church G. M., 2018. Establishing a cell-free Vibrio natriegens expression system. ACS Synthetic Biology, 7(10): 2475–2479. https://doi.org/10.1021/acssynbio.8b00222 https://doi.org/10.1021/acssynbio.8b00222">

Zhang Y., Li Z., Liu Y., Cen X., Liu D., Chen Z., 2021. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metabolic Engineering, 65: 52−65. https://doi.org/10.1016/j.ymben.2021.03.008 https://doi.org/10.1016/j.ymben.2021.03.008">




How to Cite

Le, T., Nguyen, T. H., Nguyen, T. V., Vu, T. K. O., Pham, T. A., & Le, T. H. (2023). Evaluation of the growth of \(\textit{Vibrio natriegens}\) strains in a medium containing chitin derivatives and shrimp shell hydrolysate. Academia Journal of Biology, 45(4), 73–82. https://doi.org/10.15625/2615-9023/18777