Characterization of mutations conferring streptomycin resistance in \(\textit{Mycobacterium tuberculosis}\) in Vietnam

Nguyen Quang Huy, Anne-Laure Banuls, Nguyen Thi Van Anh
Author affiliations

Authors

  • Nguyen Quang Huy University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology
  • Anne-Laure Banuls IRD-CNRS-University of Montpellier, Montpellier, France
  • Nguyen Thi Van Anh Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/18156

Keywords:

Streptomycin, multidrug-resistance, mutation, rpsL, rrs, Mycobacterium tuberculosis, Beijing family, lineage 2 genotype

Abstract

Recently, World Health Organization (WHO) has listed streptomycin (STR) in the list of second-line injectable drugs in the multidrug-resistant tuberculosis (MDR-TB) regimens and may replace amikacin under the same conditions. Nevertheless, molecular characterizations associated with STR resistance in the Mycobacterium tuberculosis population have not been fully investigated in Vietnam. The present study aimed to explore the variation and frequency of mutations in rpsL and rrs genes and their relationship with drug-resistant patterns and M. tuberculosis genotypes in 163 STR-resistant strains from Vietnam. The mutation frequency of the rpsL and rrs genes were 62% and 20.9%, respectively, and the mutation combination in both genes covered 81% of STR-resistant strains. The most prevalent mutations included rpsL Lys43Arg (38.7%), Lys88Arg (19.6%), rrs A514C (10.4%) and A517C (5.5%). Thus, sequence analysis of rpsL and rrs exhibited a sensitivity of 81% and specificity of 100% for the prediction of STR resistance in Vietnamese M. tuberculosis strains. The prevalence of STR-resistant mutations in double, triple and quadruple resistance strains was significantly different, compared with mono STR-resistant ones. Similarly, mutation frequency associated with STR resistance in MDR strains was significantly higher than that in non-MDR strains. In addition, the lineage 2 genotype was significantly correlated with a high rate of STR resistance-conferring mutation, as well as the mutation rpsL Lys43Arg (P < 0.01), while the lineage 1 genotype was associated with a low rate of STR resistance-conferring mutation and rrs mutations (P<0.05). In conclusion, sequence analysis may be useful for the rapid detection of STR resistance in MDR M. tuberculosis strains, which in turn could contribute to better control strategies of TB in Vietnam. Other molecular mechanisms associated with STR resistance in STR-resistant strains without mutations in the rpsL and rrs genes need to be further investigated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Banu S., Rahman S. M., Khan M. S., Ferdous S. S., Ahmed S., Gratz J., Houpt E. R., 2014. Discordance across several methods for drug susceptibility testing of drug-resistant Mycobacterium tuberculosis isolates in a single laboratory. J Clin Microbiol, 52(1): 156−163.

Buu T. N., Huyen M. N., Lan N. T., Quy H. T., Hen N. V. Z., van Soolingen D., 2009. The Beijing genotype is associated with young age and multidrug-resistant tuberculosis in rural Vietnam. Int J Tuberc Lung Dis, 13(7): 900–906.

Buu T. N., van Soolingen D., Huyen M. N., Lan N. T., Quy H. T., Tiemersma E. W., Cobelens, F. G., 2012. Increased transmission of Mycobacterium tuberculosis Beijing genotype strains associated with resistance to streptomycin: a population-based study. PLoS One, 7(8): e42323. https://doi.org/ 10.1371/journal.pone.0042323.

Carter A. P., Clemons W. M., Brodersen D. E., Morgan-Warren R. J., Wimberly B. T., & Ramakrishnan V., 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 407(6802): 340−348.

Cuevas-Cordoba B., Cuellar-Sanchez A., Pasissi-Crivelli A., Santana-Alvarez C. A., Hernandez-Illezcas J., & Zenteno-Cuevas R., 2013. rrs and rpsL mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J Microbiol Immunol Infect, 46(1): 30−34.

Finken M., Kirschner P., Meier A., Wrede A., & Bottger E. C., 1993. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol, 9(6): 1239−1246.

Fukuda M., Koga H., Ohno H., Yang B., Hirakata Y., Maesaki S., Kohno S., 1999. Relationship between genetic alteration of the rpsL gene and streptomycin susceptibility of Mycobacterium tuberculosis in Japan. J Antimicrob Chemother, 43(2): 281−284.

Hang N. T., Maeda S., Lien L. T., Thuong P. H., Hung N. V., Thuy T. B., Keicho N., 2013. Primary drug-resistant tuberculosis in Hanoi, Viet Nam: present status and risk factors. PLoS One, 8(8): e71867. https://doi.org/10.1371/journal. pone.0071867

Honore N., Cole S. T., 1994. Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother, 38(2): 238−242.

Huy N. Q., Lucie C., Hoa T. T. T., Hung N. V., Lan N. T. N., Son N. T., Van Anh N. T., 2017. Molecular analysis of pyrazinamide resistance in Mycobacterium tuberculosis in Vietnam highlights the high rate of pyrazinamide resistance-associated mutations in clinical isolates. Emerg Microbes Infect, 6(10): e86. https://doi.org/10.1038/emi. 2017.73.

Jnawali H. N., Hwang S. C., Park Y. K., Kim H., Lee Y. S., Chung G. T., Ryoo S., 2013. Characterization of mutations in multi- and extensive drug resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic of Korea. Diagn Microbiol Infect Dis, 76(2): 187−196.

Le Hang N. T., Hijikata M., Maeda S., Miyabayashi A., Wakabayashi K., Seto S., Kato S., 2021. Phenotypic and genotypic features of the Mycobacterium tuberculosis lineage 1 subgroup in central Vietnam. Sci Rep, 11(1): 13609. https://doi.org/10.1038/s41598-021-92984-5

Lipin M. Y., Stepanshina V. N., Shemyakin I. G., Shinnick T. M., 2007. Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect, 13(6): 620−626.

Mitchison D. A., 1985. The action of antituberculosis drugs in short-course chemotherapy. Tubercle, 66(3): 219−225.

Nguyen H. Q., Nguyen N. V., Contamin L., Tran T. H. T., Vu T. T., Nguyen H. V., Nguyen V. A. T., 2017. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes? Infect Genet Evol, 50: 55−61.

Nguyen Q. H., Contamin L., Nguyen T. V. A., Banuls A. L., 2018. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl, 11(9): 1498−1511.

Nguyen V. A., Banuls A. L., Tran T. H., Pham K. L., Nguyen T. S., Nguyen H. V., Choisy M., 2016. Mycobacterium tuberculosis lineages and anti-tuberculosis drug resistance in reference hospitals across Viet Nam. BMC Microbiol, 16(1): 167. https://doi.org/ 10.1186/s12866-016-0784-6

Nguyen V. A., Choisy M., Nguyen D. H., Tran T. H., Pham K. L., Thi Dinh P. T., Dang D. A., 2012. High prevalence of Beijing and EAI4-VNM genotypes among M. tuberculosis isolates in northern Vietnam: sampling effect, rural and urban disparities. PLoS One, 7(9): e45553. https://doi.org/10.1371/journal. pone.0045553

Nhu N. T., Lan N. T., Phuong N. T., Chau N., Farrar J., Caws M., 2012. Association of streptomycin resistance mutations with level of drug resistance and Mycobacterium tuberculosis genotypes. Int J Tuberc Lung Dis, 16(4): 527−531.

Nhung N. V., Hoa N. B., Sy D. N., Hennig C. M., Dean A. S., 2015. The fourth national anti-tuberculosis drug resistance survey in Viet Nam. Int J Tuberc Lung Dis, 19(6): 670−675.

Okamoto S., Tamaru A., Nakajima C., Nishimura K., Tanaka Y., Tokuyama S., Ochi K., 2007. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol, 63(4): 1096−1106.

Smittipat N., Juthayothin T., Billamas P., Jaitrong S., Rukseree K., Dokladda K., Palittapongarnpim P., 2016. Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist, 4: 5−10. https://doi.org/10.1016/ j.jgar.2015. 11.009

Spies F. S., von Groll A., Ribeiro A. W., Ramos D. F., Ribeiro M. O., Dalla Costa E. R., da Silva P. E., 2013. Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs, rpoB, and katG genes. Tuberculosis (Edinb), 93(2): 150−154. https://doi.org/10.1016/j.tube. 2012.11.004

Springer B., Kidan Y. G., Prammananan T., Ellrott K., Bottger E. C., Sander P., 2001. Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother, 45(10): 2877−2884. https://doi.org/10.1128/ AAC.45.10.2877-2884.2001

Sreevatsan S., Pan X., Stockbauer K. E., Williams D. L., Kreiswirth B. N., Musser J. M., 1996. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob Agents Chemother, 40(4): 1024−1026.

Sun H., Zhang C., Xiang L., Pi R., Guo Z., Zheng C., Sun Q., 2016. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis (Edinb), 96: 102−106. https://doi.org/10.1016/ j.tube.2015.09.004

Sun Y. J., Luo J. T., Wong S. Y., Lee A. S., 2010. Analysis of rpsL and rrs mutations in Beijing and non-Beijing streptomycin-resistant Mycobacterium tuberculosis isolates from Singapore. Clin Microbiol Infect, 16(3): 287−289. https://doi.org/10.1111/j.1469-0691.200 9.02800.x

Thida Oo N. A., San L. L., Thapa J., Aye K. S., Aung W. W., Nakajima C., Suzuki Y., 2018. Characterization of mutations conferring streptomycin resistance to multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar. Tuberculosis (Edinb), 111: 8−13. https://doi.org/10.1016/j.tube.2018.05.003

Tsai Y. K., Liou C. H., Lin J. C., Ma L., Fung C. P., Chang F. Y., Siu L. K., 2014. A suitable streptomycin-resistant mutant for constructing unmarked in-frame gene deletions using rpsL as a counter-selection marker. PLoS One, 9(9): e109258. https://doi.org/10.1371/journal.pone.0109258

Tudo G., Rey E., Borrell S., Alcaide F., Codina G., Coll P., Gonzalez-Martin J., 2010. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis clinical isolates in the area of Barcelona. J Antimicrob Chemother, 65(11): 2341−2346. https://doi.org/ 10.1093/jac/dkq322

WHO., 2019. WHO consolidated guidelines on drug-resistant tuberculosis treatment. The End TB Stratery. Geneva, Switzerland., ISBN 978-92-4-155052-9.

WHO., 2022. Global tuberculosis Report 2022. https://www.who.int/publications/ i/item/9789240061729. Accessed: 20/03/2023.

Wong S. Y., Lee J. S., Kwak H. K., Via L. E., Boshoff H. I., Barry C. E., 2011. Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 55(6): 2515−2522.

Downloads

Published

29-09-2023

How to Cite

Quang Huy, N., Banuls, A.-L., & Van Anh, N. T. (2023). Characterization of mutations conferring streptomycin resistance in \(\textit{Mycobacterium tuberculosis}\) in Vietnam. Academia Journal of Biology, 45(3), 87–97. https://doi.org/10.15625/2615-9023/18156

Issue

Section

Articles

Most read articles by the same author(s)