Functional characterization of the \(\textit{OsSWEET13 }\) promoter involved in the infection of \(\textit{ Xanthomonas oryzae }\) pv. \(\textit{oryzae (Xoo) }\) in rice cultivar TBR225
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/16759Keywords:
Bacterial leaf blight, OsSWEET13, TAL effector, TBR225, Xanthomonas oryzaeAbstract
Xanthomonas oryzae pv. oryzae (Xoo) causes severe bacterial leaf blight (BLB) disease to many Vietnamese major rice cultivars, including the TBR225. OsSWEET13 belongs to group III of the OsSWEET gene family encoding sugar transport proteins, which is considered one of the “susceptibility” genes (S genes) necessary for BLB disease. In this study, the rice cultivar TBR225 was determined to be susceptible to 19/20 Vietnamese Xoo isolates collected from the Northern provinces. Two of the three tested isolates (VXO_60 and VXO_96 isolates) were shown to up-regulate OsSWEET13 upon the Xoo infection of the TBR225 cultivar. The TBR225 OsSWEET13 promoter was isolated for sequencing analysis. The isolated DNA fragment was 615 bp in size, contained an effector binding element (EBE) PthXo2 that was recognized by the type III-secretory transcription activator-like (TAL) proteins of the Xoo. This promoter showed a similarity of more than 99% to the published OsSWEET13 promoter sequences (AP014967.1 and CP018167.1). Our findings are basic for the generation of highyielding rice varieties with resistance to BLB disease by genetic engineering in Vietnam.
Downloads
Metrics
References
Antony G., Zhou J., Huang S., Li T., Liu B., White F., Yang B., 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os11N3. Plant Cell, 22(11): 3864–3876.
Blanvillain-Baufumé S., Reschke M., Solé M., Auguy F., Doucoure H., Szurek B., Meynard D., Portefaix M., Cunnac S., Guiderdoni E., Boch J., Koebnik R., 2017. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J., 15(3): 306–317.
Boch J., Bonas U., 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol., 48: 419–36.
Chen L. Q., Qu X. Q., Hou B. H., Sosso D., Osorio S., Fernie A. R., Frommer W. B., 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335(6065): 207–11.
Chu Z., Yuan M., Yao J., Ge X., Yuan B., Xu C., Li X., Fu B., Li Z., Bennetzen J. L., Zhang Q., Wang S., 2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev., 20(10): 1250–1265.
Doyle J. J. and Doyle J. L., 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13–15
Huang S., Antony G., Li T., Liu B., Obasa K., Yang B., White F.F., 2016. The broadly effective recessive resistance gene xa5 of rice is a virulence effector-dependent quantitative trait for bacterial blight. Plant J., 86(2): 186–194.
Huong P. T. T, Phuong N. D. and Hoi P. X., 2018. Study on isolating the OsSWEET14 promoter and designing gRNA structures to enhance blight resistance of rice variety TBR225. Journal of Agriculture and Rural Development, 23: 42–49 (in Vietnamese with English summary)
Hutin M., Sabot F., Ghesquière A., Koebnik R., Szurek B., 2015. A knowledge-based molecular screen uncovers a broad spectrum OsSWEET13 resistance allele to bacterial blight from wild rice. Plant J., 84(4): 694–703.
Ke Y., Hui S. and Yuan M., 2017. Xanthomonas oryzae pv. oryzae Inoculation and Growth Rate on Rice by Leaf Clipping Method. Biol Protocol, doi: 10.21769/BioProtoc.2568.
Lien N. T., Mai T. T. X., Pha N. T., 2012. Isolation and identification of rice blight bacteria (Xanthomonas oryzae pv. oryzae) by multicomponent PCR technique, Journal of Science Can Tho University, 23a: 155–164 (in Vietnamese with English summary)
Manh Bao T., Thi Hop T., Thi Tiec T., Thi Nhung N., Van Hoan N., 2016. Results of breeding Rice cultivar TBR225. Vietnam J. Agri. Sci., 14(9): 1360–1367. (in Vietnamese with English summary).
Oliva R., Ji C., Atienza-Grande G., Huguet-Tapia J. C. and Perez-Quintero A., 2019. Broad spectrum resistance to bacterial blight in rice using genome editing. Nature biotechnology, 37(11): 1344–1350.
Sam V. H., Ha N. T., Quyen C. L., Phuong N. D., Hoi P. X., 2019. Functional characterization of the OsSWEET14 gene involved in the infection of blight leaf bacteria in Bacthom7 variety rice. Science and Technology Journal of Agriculture and Rural Development, 353(2): 13–19. (in Vietnamese with English summary).
Sambrook J., Russel D.W., 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY.
Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B., Hood L.E., 1986. Fluorescence detection in automated DNA sequence analysis. Nature, 321(6071): 674–679.
Singh M., Meenakshi S., Kumar A., Singh A.K., Pandey K.D., 2020. Endophytic bacteria in plant disease management. In: Kumar, A., Singh, V.K. (Eds.), Microbial endophytes: Prospects for sustainable agriculture. Woodhead publishing series in food science, technology and nutrition.
Streubel J., Pesce C., Hutin M., Koebnik R., Boch J., Szurek B., 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol., 200: 808–819. https://doi.org/10.1111/nph.12411
Ton P. H., Giang N. V., Hung N. V. and Hai T. V., 2013. Survey on the genetic resources of sticky rice resistant to bacteria leaf blight. Journal of Science and Development, 11(6): 886–891. (in Vietnamese with English summary).
Zhou J., Peng Z., Long J., Sosso D., Liu B., Eom J.-S. Huang S., Liu S., Cruz C., 2015. Frommer W., White F. And Yang B., 2015. Gene targeting by the TAL effector PthXo2 reals cryptic resistance gene for bacterial blight of rice. Plant J., 82(4): 632–43. https://doi.org/10.1111/ tpj.12838