Screening of neuroprotective substances relevant to Alzheimer’s disease from seaweed species collected in Ninh Thuan and Khanh Hoa provinces, Vietnam

Luu Thi Tam, Hoang Thi Minh Hien, Le Thi Thom, Nguyen Cam Ha, Ngo Thi Hoai Thu, Nguyen Van Tru, Tran Mai Duc, Nguyen Thi Minh Hang, Dang Diem Hong
Author affiliations


  • Luu Thi Tam Institute of Biotechnology, VAST, Vietnam
  • Hoang Thi Minh Hien Institute of Biotechnology, VAST, Vietnam
  • Le Thi Thom Institute of Biotechnology, VAST, Vietnam
  • Nguyen Cam Ha Institute of Biotechnology, VAST, Vietnam
  • Ngo Thi Hoai Thu Institute of Biotechnology, VAST, Vietnam
  • Nguyen Van Tru Institute of Biotechnology, VAST, Vietnam
  • Tran Mai Duc Nha Trang Institute of Technology Research and Application, VAST, Vietnam
  • Nguyen Thi Minh Hang Institute of Marine Biochemistry, VAST, Vietnam
  • Dang Diem Hong Institute of Biotechnology, VAST, Vietnam



Currently, nearly 36.5 million people live with Alzheimer’s disease worldwide, and acetylcholinesterase inhibition is considered the main treatment strategy against it. Seaweeds (or macroalgae) are a natural source of high-value bioactive compounds and have great potential in the production of health foods/foods, pharmaceuticals, cosmetics, animal feeds, biofertilizers, and biofuels. The most studied and applied seaweed species include red seaweed (Rhodophyta), green seaweed (Chlorophyta) and brown seaweed (Phaeophyta). This study aimed to evaluate the antioxidant and neuroprotective activities of extracts/substances isolated with solvents including ethanol 75o and 96o, water, n-hexane, ethyl acetate under normal and ultrasonic conditions (power 80W, frequency 4.7 kHz and for 1 hour) from 5 economically important seaweed species belonging to genera Caulerpa, Sargassum, Gracilaria, Ulva and Kappaphycus collected in Ninh Thuan and Khanh Hoa provinces, Vietnam. The results have shown that 05/30 extracts and substances (including SaE96S, SaH, SaHW, SaEA and fucosterol) isolated from five seaweed species exhibited high antioxidant activity through the free radical screening method using 2,2-diphenyl-1-picrylhydrazyl (DPPH) (with EC50 values < 5 mg/mL for extracts and EC50 value < 2 mM for substance) in comparison with positive control ascorbic acid (EC50 = 0.015 mg/mL); acetylcholinesterase inhibitory activity using acetylcholinesterase inhibitor screening KIT (with IC50 values of < 200 µg/mL for both extracts and substances), compared with positive control galantamine (with IC50 value of 52,8 µg/mL). The extracts/substances were able to protect the cell against cytotoxity in the C6 alzheimer’s disease cell model induced by amyloid beta-protein fragment (Aβ25-35). The results achieved from this research have proven that the extracts/substances isolated from seaweed species were a potential source of medicinal agents for the prevention and treatment of alzheimer’s disease.


Download data is not yet available.


Metrics Loading ...


Alghazwi M., Kan Y. Q., Zhang W., Gai W. P., Garson M. J., Smid S., 2016. Neuroprotective activities of natural products from marine macroalgae during 199-2015. J. Appl. Phycol., 28:


Alghazwi M., Smid S., Zhang W., 2018. In vitro protective activity of South Australian marine sponge and macroalgae extracts against amyloid beta (Aβ1-42) induced neurotoxicity in PC-12 cells. Neurotoxicol. Teratol., 68: 72–83.

Ali T. B., Schleret T. R., Reilly B. M., Chen W. Y., Abagyan R., 2015. Adverse effects of cholinesterase inhibitors in Dementia, according to the pharmacovigilance databases of the United-States and Canada. PLos One, 10: 0144337.

Castro-Silva E. S., Bello M., Hernandez-Rodriguez M., Correa-Basurto J., Murillo-Alvarez J.I., Rosales-Hernandez M.C., Munoz-Ochoa M., 2019. In vitro and in silico evaluation of fucosterol from Sargassum horridum as potential human acetylcholinesterase inhibitor. J. Biomol. Struct. Dyn., 37(12): 3259–3268.

Choi M. W., Jung C. G., Kim H. R., Kim R. I., 2017. Effect of Sargassum serratifolium Extracts on β-Amyloid Production. Korean J. Fish Aquat. Sci., 50(1): 085–091.

Corsetto P. A., Montorfano G., Zava S., Colombo I., Ingadottir B., Jonsdottir R., Sveinsdottir K., Rizzo A. M., 2020. Characterization of antioxidant potential of seaweed extracts for enrichment of convenience food. Antioxidants (Basel), 19(3): 249.

Cortés A., Gracia E., Moreno E., Mallol J., Lluís C., Canela E. I., Casadó V., 2015. Moonlighting adenosine deaminase: a target protein for drug development. Med. Res. Rev., 35: 85–125.

Dang Diem Hong and Nguyen Cam Ha, 2022. Chapter Title: Seaweeds of Vietnam: Opportunities for commercial production. Chapter 7 - Volume 1. In Book: Sustainable global resources of seaweeds. Springer Publishing Company, pp. 109–127.

Dang D. H., Anh H. T. L., Thom L. T., Ha N. C., Tien D. D., Duy D. A., 2019. The genus Gracilaria in Vietnam. Institute of Ocean and Earth Sciences Monograph Series 17: Taxonomy of Southeast Asian Seaweed III. Phang, Song & Lim (eds): 29–46.

Dang D. H., Hien H. M., Son P. N., 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol., 19: 817–826.

Dang D. H., Hien H. T. M., 2004. Nutritional analysis of Vietnamese seaweeds for food and medicine, No Title. Biofactors,

: 323–325.

Fayzi L., Askarne L., Cherifi O., Boufous E. H., Cherifi K., 2020. Comparative antibacterial activity of some selected seaweed extracts from Agadir coastal regions in Morocco. Intl J. Curr. Microbiol. Appl. Sci., 9: 390–399.

Feng Y., Wang X., 2012. Antioxidant therapies for Alzheimer's disease. Oxid. Med. Cell Longev., 2012: 472932.

Ferreira A., Proença C., Serralheiro M. L. M., Araujo M. E. M., 2006. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol., 108(1): 31–37.

Mendiola-Precoma J., Berumen L. C., Padilla K., Garcia-Alcocer G., 2016. Therapies for prevention and treatment of alzheimer's disease. Biomed. Res. Int., 2016: 2589276.

Graham W.V., Bonito-Oliva A., Sakmar T.P., 2017. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med., 68: 413–430.

Hira K., Sultana V., Ara J., Haque S. E., 2017. Protective role of Sargassum species in liver and kidney dysfunctions and associated disorders in rats intoxicated with carbon tetrachloride and acetaminophen. Pak. J. Pharm. Sci., 30(3): 721–728.

Lee H., Selvaraj B., Lee J. W., 2021. Anticancer effects of seaweed-derived bioactive compounds. Appl. Sci.,

: 11261.

Li X., Wang H., Long J., Pan G., He T., Anichtchik O., Belshaw R., Albani D., Edison P., Green E. K., Scott J., 2018. Systematic analysis and biomarker study for alzheimer's disease. Sci Rep.,

(1): 17394.

Lomartire S., Gonçalves A. M. M., 2022. Antiviral activity and mechanisms of seaweeds bioactive compounds on enveloped viruses-A Review. Mar. Drugs, 20(6): 385.

Ma W. W., Hou C. C., Zhou X, Yu H. L., Xi Y. D., Ding J., Zhao X., Xiao R., 2013. Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25–35 in C6 glioma cells. Neurochem Res., 38(7): 1315–1323.

Mathew M., Subramanian S., 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of Ayurvedic Medicinal plants used for cognitive disorders. PLoS ONE,

(1): e86804.

Natarajan S., Shanmugiahthevar K. P., Kasi P. D., 2009. Cholinesterase inhibitors from Sargassum and Gracilaria gracilis: Seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Nat. Prod. Res., 23: 355–69.

Niazi A. K., Kalra S., Irfan A., Islam A., 2011. Thyroidology over the ages. Indian J. Endocrinol. Metab., 15: 121–126.

Oh J. H., Choi J. S., Nam T., 2018. Fucosterol from an edible brown alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Mar. Drugs, 16: 368.

Olasehinde T. A., Mabinya L. V., Olaniran A. O., Okoh A. I., 2019a. Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds. Bioact. Carbohydr. Diet. Fibre,

: 100182.

Olasehinde T. A., Olaniran A. O., Okoh A. I., 2019b. Macroalgae as a valuable source of o bioactive compounds for the treatment of Alzheimer’s disease. Mar. Drugs,

: 609.

Pang J. R., How S. W., Wong K. H., Lim S. H., Phang S. M., Yow Y. Y., 2022. Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis. Fi. . Aquat. Sci., 25(2): 49–63.

Olasehinde T. A., Olaniran A. O., Okoh A. I., 2017. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules, 22: 480.

Pappou, S., Dardavila, M. M., Savvidou, M. G., Louli, V., Magoulas, K., Voutsas, E., 2017. Extraction of bioactive compounds from Ulva lactuca. Appl. Sci., 12: 2117.">

Phang S. W., Yeong H. Y., Ganzon-Fortes E.T., Lewmanomont K., Prathep A., Le N.H., Gerung G.S., Tan K.S., 2016. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bull. Zool. Suppl.,

: 13–59.

Prasedya E.S., Ni W. R. M, Rizkia A., Sipti M., Rizka A. F., Haji S., 2019. Antioxidant activity of Ulva lactuca L. from different coastal locations of Lombok Island, Indonesia. In: AIP Conference Proceedings. AIP Publishing LLC, pp. 020003.

Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C. P., 2013. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 9: 63.e2–75.e2.

Safitri I., Warsidah W., Mega S. J. S., Arie A. K., Novi Sumarni T., 2021. Total phenolic content, antioxidant and antibacterial activities of Sargassum polycystum of ethanol extract from waters of Kabung Island. Berkala Sainstek, 9(3): 139–145.

Sharma O. P., Bhat T. K., 2009. DPPH antioxidant assay revisited. Food Chem., 113(4): 1202–1205.

Sobuj M. K. A., Islam M., Mahmud Y., Rafiquzzaman S. M., 2021. Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Scientific Reports,

(1): 1–13.

Syad A.N., Shunmugiah K.P., Kasi P.D., 2013. Antioxidant and anti-cholinesterase activity of Sargassum wightii. Pharm. Biol., 51(11): 1401–1410.

Vassar R., 2011. BACE1 inhibitor drugs in clinical trials for alzheimer’s disease. Alzheimer’s Res. Ther. 6: 89.

Vinutha B., Prashanth D., Salma K., Sreeja S.L., Pratiti D., Padmaja R., Radhika S., Amit A., Venkateshwarlu K., Deepak M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol., 109: 359–363.

Yu X., Li Y., Mu X., 2019. Effect of quercetin on PC12 alzheimer’s disease cell model induced by Aβ25-35 and its mechanism based on Sirtuin1/Nrf2/HO-1 pathway. BioMed Res. Int., 2020: 8210578.




How to Cite

Thi Tam, L., Thi Minh Hien, H., Thi Thom, L., Cam Ha, N., Thi Hoai Thu, N., Van Tru, N., Mai Duc, T., Thi Minh Hang, N., & Hong, D. D. (2022). Screening of neuroprotective substances relevant to Alzheimer’s disease from seaweed species collected in Ninh Thuan and Khanh Hoa provinces, Vietnam. Academia Journal of Biology, 44(4), 33–45.




Most read articles by the same author(s)

1 2 3 4 5 > >>