Optimization of culture conditions for squalene production and squalene extraction method of Thraustochytrium<\i> sp. TN22
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/v42n4.14978Keywords:
Thraustochytrium, culture, isolation, squalene, production.Abstract
Squalene, a natural triterpene with important roles as antioxidant, skin hydrating, cardio-protection and detoxifier, has attracted the attention of researchers in the world. This study investigated the optimal culture conditions for squalene production and to develop a method for squalene extraction and purification from cell suspension of Thraustochytrium sp. TN22. The results showed that squalene production by the strain Thraustochytrium sp. TN22 was optimum at 2% glucose, 0.5% yeast extract and 0,14% mixture of vitamins (B1, B6 and B12) at 28 oC for 2 days of cultivation. At the optimum conditions, the dry biomass, squalene content and productivity were approximately 9.3 g/L, 9.9 mg/g DCW and 95.3 mg/L, respectively. Time-dependence on cell lysis and extraction solvents were selected as the extraction parameters. The obtained results showed that the highest squalene production of 178.1 mg/100 g biomass was obtained in cell lysate at alkaline medium (pH = 10), at 60 oC for 6 hours and n-hexan was the best solvent for squalene extraction. Squalene was then purified on silica gel column using n-hexan as the mobile phase and 90% purity of squalene was archived. Our obtained results are promising for the commercial productions of various value-added compounds from species belong to the genus Thrautochytrium in Vietnam.
Downloads
Metrics
References
Bligh E. G., Dyer W. J., 1956. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37(8): 911–917.
Bajpai P. K., Bajpai P., Ward O. P., 1991. Production of docosahexaenoic acid by Thraustochytrium aureum. Appl. Microbiol. Biotechnol., 35: 706–710.
Chen G., Fan K. W., Lu F. P., Li Q., Aki T., Chen F., Jiang Y., 2010. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnology, 27: 382–389.
Dang Diem Hong, Hoang Thi Lan Anh, 2016. New heterotrophic marine microalgae Labyrinthula, Schizochytrium, Thraustochytrium in Vietnam: Opportunities and Challenges. Natural Sciences and Technology Publishing House, pp. 626. (in Vietnamese).
Dinh Thi Ngoc Mai, Nguyen Cam Ha, Le Thi Thom, Dang Diem Hong, 2013. Initial studies on squalene from some marine microalgae isolated in Vietnam. Journal of Biology, 35(3): 333–341. (in Vietnamese with English summary).
Hoang L. A. T., Nguyen H. C., Le T. T., Hoang T. H. Q., Pham V. N., Hoang M. H. T., Ngo H. T. T., Hong D. D., 2018. Different fermentation strategies by Schizochytrium mangrovei strain PQ6 to produce feedstock for exploitation of squalene and omega-3 fatty acids. J. Phycol., 54(4): 550–556.
Hoang M. H., Ha N. C., Thom L. T., Tam L. T., Anh H. T., Thu N. T., Hong D. D., 2014. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process. J. Biosci. Bioeng., 118(6): 632–639.
Hoang Thi Lan Anh, Dinh Thi Ngoc Mai, Ngo Thi Hoai Thu, Dang Diem Hong., 2010. Isolation of new heterotrophic marine microalga rich DHA and carotenoid strain belong to Thraustochytrium genus from Thi Nai-Binh Dinh saltmash lagoon. Vietnam Journal of Biotechnology, 8: 459–465. (in Vietnamese with English summary).
Jiang Y., Fan K. W. and Wong R. T. Y., 2004. Fatty acids composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food. Chem., 52: 1196–1200.
Lee C. K. J., Nichols C. M., Blackburn S. I., Dunstan G. A., Koutoulis A., Nichols P. D., 2014 Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Mar. Biotechnol., 16(4): 396–411.
Li Q., Chen G., Fan K. W., Lu F., Aki T., Jiang Y., 2009. Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves. J. Agric. Food Chem., 57(10): 4267–4272.
Lu H. T., Jiang Y., Chen F., 2003. Preparative separation and purification of squalene from the microalga Thraustochytrium ATCC 26185 by high-speed counter-current chromatography. J. Chromatogr. A., 994(1-2): 37–43.
Nakazawa A., Matsuura H., Kose R., Kato S., Honda D., Inouye I., Kaya K., Watanabe M. M., 2012. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol., 109: 287–291.
Nguyen Cam Ha, Hoang Thi Minh Hien, Le Thi Thom, Hoang Thi Huong Quynh, Dang Diem Hong., 2017. Optimization of fermentation conditions for squalene production by heterotrophic marine microalgae Schizochytrium mangrovei PQ6. Journal of Biology, 39(3): 449–458.
Otagiri M., Khalid A., Moriya S., Osada H., Takahashi S., 2017. Novel squalene-producing thraustochytrids found in mangrove water. Biosci. Biotechnol. Biochem., 81(10): 2034–2037.
Patel A., Rova U., Christakopoulos P., Matsakas L., 2019. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnol. Biofuels, 12: 255.
Pollier J., Vancaester E., Kuzhiumparambil U., Vickers C. E., Vandepoele K., Goossens A., et al., 2019. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat. Microbiol., 4: 226–33.
Popa O., Băbeanu N. E., Popa I., Niță S., Dinu-Pârvu C. E., 2015. Methods for obtaining and determination of squalene from natural sources. Biomed. Res. Int., pp. 367202.
Pora B., Qian Y., Caulier B., Comini S., Looten P., Segueilha L., 2014. Method for the preparation and extraction of squalene from microalgae. Patent US20140088201.
Pouchert C. J., Behnke J., 1993. The Aldrich Library of 13C and 1H FTNMR Spectra. Aldrich Chemical Co., Milwaukee, WI., 46.
Spanova M., Daum G., 2011. Squalene-biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol., 113: 1299–1320.
Shene C., Garcés M., Vergara D., Peña J., Claverol S., Rubilar M., Leyton A, 2019. Production of lipids and proteome variation in a chilean Thraustochytrium striatum strain cultured under different growth conditions. Mar. Biotechnol. (NY)., 21(1):99‒110.
Tran T. L., Miranda A. F., Gupta A., Puri M., Ball A. S., Adhikari B., Mouradov A., 2020. The nutritional and pharmacological potential of new Australian thraustochytrids isolated from mangrove sediments. Mar. Drugs, 18: 151.
Xie Y., Sen B., Wang G., 2017. Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresour. Technol., 244: 1269–80.