\(\textit{In vitro}\) regeneration of \(\textit{Renanthera imschootiana}\) Rolfe from protocorm-like body
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/17155Keywords:
Conservation, epiphytic orchid, humic acid, plant growth regulators, silver nanoparticlesAbstract
Renanthera imschootiana Rolfe is an extremely rare and endangered tropical epiphytic orchid. Studies on in vitro culture of R. imschootiana were conducted in order to conserve and increase the genetic pool of this wild orchid species. In this study, the effect of plant growth regulators (BA and NAA), ripe bananas in combination with potato, humic acid, and silver nanoparticles (AgNPs) were investigated to find a suitable condition for in vitro plant regeneration from R. imschootiana protocorm-like body (PLB). The results showed that after 45 days of culture, MS medium supplemented with 100 g ripe banana/liter and 100 g potato/liter was suitable for regenerating shoots from the protocorm-like body (PLB) (17.56 shoots/PLBs and 100.00% of shoot-regenerating PLBs); MS medium supplemented with 2.0 mg/L BA, 0.3 mg/L NAA and 4 ppm AgNPs was the most suitable for the growth of shoots after 60 days of culture (10.00 leaves/shoot and shoot length of 4.22 cm). The in vitro shoots were transferred to half-strength MS supplemented with humic acid and AgNPs to investigate the root formation of R. imschootiana. After 60 days of culture, the best rooting was obtained at 2.0 mg/L humic acid and 6 ppm AgNPs (8.33 roots/shoot; root length of 4.00 cm and 100.00% root formation). The findings suggest that the in vitro micropropagation from R. imschootiana protocorm-like body provides a useful alternative tool for the conservation of this endangered species.
Downloads
References
Aktar S., Nasiruddin K. M., Hossain K., 2008. Effects of different media and organic additives interaction on in vitro regeneration of Dendrobium orchid. Journal of Agriculture and Rural Development, 6: 69–74. https://doi.org/ 10.3329/jard.v6i1.1659
https://doi.org/ 10.3329/jard.v6i1.1659">
Ali A., Mohammad S., Khan M. A., Raja N. I., Arif M., Kamil A., Mashwani Z. U. R., 2019. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 715–724. https://doi.org/10.1080/ 21691401.2019.1577884
https://doi.org/10.1080/ 21691401.2019.1577884">
Backor M., Kovik J., Dzubaj A., Bakorova M., 2009. Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss. Plant Growth Regulation, 58: 279–286. https://doi.org/10.1007/s10725-009-9376-x
https://doi.org/10.1007/s10725-009-9376-x">
Elmongya M. S., Zhoua H., Caoa Y., Liua B., Xiaa Y., 2018. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Scientia Horticulturae, 227: 234–243. https://doi.org/10.1016/j.scienta.2017.09.027
https://doi.org/10.1016/j.scienta.2017.09.027">
Huong B. T. T., Gioi D. H, 2021. Study on in vitro application of silver nanoparticles in leaf propagation of Globe amaranth (Gomphrena globosa L.). Vietnam Journal of Agricultural Sciences, 19(3): 363–369.
Chau H. N., Bang L. A., Buu N. Q., Dung T. T. N., Ha H. T., Quang D. V., 2008. Some results in manufacturing of nanosilver and investigation of its application for disinfection. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(2): 241–248.
Chen S., Liu Z., Zhu G., Lang K., Tsi Z., Luo Y., 2009. Flora of China, Beijing: Science Press.
CITES. http://www.cites.org/eng/app/appen-dices.php. Appendices I, II and III. accessed: 22/11/2021.
http://www.cites.org/eng/app/appen-dices.php. Appendices I, II and III. accessed: 22/11/2021.">
Dhanapal S., Sathish S. D., 2013. Humic acids and its role in plant tissue culture at low nutrient level. JAIR, 2(6): 338–340.
Dhanapal S., Sathish S. D., 2014. Enhanced in vitro propagation of Musa accuminata induced by humic acid from coal extract as compared with commercially available humic acid products. IJIRSET, 3(7):
−307. https://doi.org/10.15623/ijret.2014.0307051
https://doi.org/10.15623/ijret.2014.0307051">
Cuong D. M., Phuong T. T. B., Nhut D. T., 2018. Effect of nanosilver on callus induction and shoot regeneration ability from leaf explants of strawberry (fragaria x ananassa) cultured in vitro. HUJOS: Natural Science, 127(1C): 61–70. https://doi.org/10.26459/hueuni-jns.v127i1C.4893
https://doi.org/10.26459/hueuni-jns.v127i1C.4893">
Gioi D. H., Huong B. T. T., 2019. Study on use of silver nanoparticles
in phalaenopsis orchid (Phalaenopsis sp.) tissue culture. Forestry science and technology journal, 1: 19–24.
Duncan D. B., 1955. Multiple range and multiple F tests. Biometrics, 11(1): 1–42.
Gallant A., 2004. Biostimulants: What they are and how they work. Turf & Rec: 1–4.
Gnasekaran P., Xavier R., Sinniah U. R., Subramaniam S., 2010. A study on the use of organic additives on the protocorm-like bodies (PLBS) growth of Phalaenopsis violacea orchid. J Phytol., 2: 29–33.
Goh C. J., Tan H., 1982. Clonal propagation from leaf explants in Renantanda orchid hybrid. Orchid Rev., 90: 295–296.
Guan L., Tayengwa R., Cheng Z. M., Peer W. A., Murphy A. S., Zhao M., 2019. Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biol., 19(1): 1–16. https://doi.org/10.1186/s12870-019-2002-9
https://doi.org/10.1186/s12870-019-2002-9">
Ngan H. T. M., Trinh T. D. H., Cuong D. M., Tung H. T., Linh N. T. N., Hien V. T., Nguyen P. L. H., Luan V. Q., Le B. V., Nhut D. T., 2019. Limitation of hyperdricity and enhanced survival rate of Gerbera jamesonii plantlets cultured in vitro on medium supplemented with silver nanoparticles. Journal of Biotechnology, 17(1): 115–124.
Haissig B. E., Davis T. D., 1994. A historical evaluation of adventitious rooting research to 1993. In: Biology of Root Formation. Davis T.D. and B.E., Haissig editors. New York: Plenum Press: 275–331.
Heloir M. C., Kevers C., Hausman J. F., Gaspar T., 1996. Changes in the concentrations of auxins and polyamines during rooting of in vitro-propagated walnut shoots. Tree Physiology, 16(5): 515–519. https://doi.org/10.1093/ treephys/16.5.515
https://doi.org/10.1093/ treephys/16.5.515">
Hossain M., Sharma M., Da Silva J. A. T., Pathak P., 2010. Seed germination and tissue culture of Cymbidium giganteum Wall. Ex Lindl. Scientia Horticulturae, 123 (4): 479–487. https://doi.org/10.1016/ j.scienta.2009.10.009
https://doi.org/10.1016/ j.scienta.2009.10.009">
Islam K. M. S., Schuhmacher A., Gropp J. M., 2005. Humic acid substances in animal agriculture. Pakistan Journal of Nutrition, 4(3): 126–134. http://dx.doi.org/10.3923/ pjn.2005.126.134
http://dx.doi.org/10.3923/ pjn.2005.126.134">
Islam M. O., Matsui S., Ichihashi S., 2000. Effect of complex organic additives on seed germination and carotenoid content in Cattleya seedlings. Lindleyana, 15(2): 81–88.
Islam O., Rahman A., Matsui S., Prodhan A., 2003. Effects of complex organic extracts on callus growth and PLB regeneration through embryogenesis in the Doritaenopsis Orchid. Jpn. Agric. Res. Q., 37: 229–235. http://dx.doi.org/10.6090/ jarq.37.229
http://dx.doi.org/10.6090/ jarq.37.229">
Kole C., Kumar D. S., Khodakovskaya M. V., 2016. Plant nanotechnology: principles and practices. Springer, Switzerland.
Lin D.N., Chen Z.L., Duan J., Wu K.L., Zeng S.J., 2008. Seed germination in vitro of Renanthera imschootiana Rolfe. Journal of Tropical and Subtropical Botany, 16(1): 83–88. https://doi.org/10.3969/ j.issn.1005-3395.2008.1.013
https://doi.org/10.3969/ j.issn.1005-3395.2008.1.013">
Mohamed S. E., Hong Z., Yan C., Bing L., Yiping X., 2017. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Scientia Horticulturae, 227: 234–243. https://doi.org/ 10.1016/j.scienta.2017.09.027
https://doi.org/ 10.1016/j.scienta.2017.09.027">
Murashige T., Skoog F., 1962. Areivsed medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology, 15: 473–497. https://doi.org/ 10.1111/j.1399-3054.1962.tb08052.x
https://doi.org/ 10.1111/j.1399-3054.1962.tb08052.x">
Ho P. H., 1992. An illustrated flora of Vietnam, Vol. 3. Tre Publishing House, pp. 967–968.
Rajkumar K., Sharma G. J., 2009. Intergeneric hybrid of two rare and endangered orchids, Renanthera imschootiana Rolfe and Vanda coerulea Griff. ex L. (Orchidaceae): Synthesis and characterization. Euphytica, 165: 247–256. http://dx.doi.org/10.1007/s10681-008-9755-9
http://dx.doi.org/10.1007/s10681-008-9755-9">
Razzaq A., Ammara R., Jhanzab H. M., Mahmood T., Hafeez A., Hussain S., 2016. A novel nanomaterial to enhance growth and yield of Wheat. Journal of Nanoscience and Nanotechnology, 2(1): 55–58.
Rezvani N., Sorooshzadeh A., Farhadi N., 2012. Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol, 1: 517–522.
Robert E. P., 2007. Organic matter, humus, humates, humic acid, fulvic acid and humin. Emeritus Associate Professor Texas A & M University.
Roy J., Banerjee N., 2002. Rhizome and shoot development during in vitro propagation of Geodorum densiflorum (Lam.) Schltr. Scientia Horticulturae, 94: 181–192. https://doi.org/10.1016/S0304-4238(01)00373-9
https://doi.org/10.1016/S0304-4238(01)00373-9">
Rzepka-Plevnes D., Kulpa D., Gołębiowska D. and Porwolik D., 2011. Effects of auxins and humic acids on in vitro rooting of strawberry (Fragaria x ananassa Duch.). Journal of Food, Agriculture and Environment, 9 (3&4): 592–595.
Salachna P., Byczyńska A., Zawadzińska A., Piechocki R., Mizielińska M., 2019. Stimulatory effect of silver nanoparticles on the growth and flowering of otted oriental Lilies. Agronomy, 9(10): 1–14. https://doi.org/10.3390/agronomy9100610
https://doi.org/10.3390/agronomy9100610">
Salama H. M. H., 2012. Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and Corn (Zea mays L.). International Research Journal of Biotechnology, 3(10): 190–197.
Sanzari I., Leone A., Ambrosone A., 2019. Nanotechnology in plant science: to make a long story short. Frontiers in Bioengineering and Biotechnology, 7:
–12. https://doi.org/10.3389/fbioe.2019.00120
https://doi.org/10.3389/fbioe.2019.00120">
Sarmast M. K., Salehi H., 2016. Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol, 58: 441–449. https://doi.org/10.1007/ s12033-016-9943-0
https://doi.org/10.1007/ s12033-016-9943-0">
Seeni S., Latha P. G., 1992. Foliar regeneration of the endangered Red Vanda, Renanthera imschootiana Rolfe. Plant Cell, Tissue and Organ Culture, 29(3): 167–172.
Dan T. Q., Ly N. M., Tuan V. C., 2018. In vitro propagation of a precious orchid species Renanthera imschootiana Rolfe research. Journal of Science and Technology, Da Nang University, 3(124): 89–93.
Vinh T. T., Bing H. N., Tham D. T., Hang N. T. T., Cong V. K., Duy N. V., 2021. Micropropagation of paphiopedilum x dalatense. Journal of Biotechnology, 19(1): 155–163. https://doi.org/10.15625/ 1811-4989/14550.
https://doi.org/10.15625/ 1811-4989/14550.">
Van S. J., Stewart J., 1975. Cytokinins in banana fruit. Zeitschrift für Pflanzenphysiologie, 76(3): 280–283. https://doi.org/10.1016/S0044-328X(75)80024-9
https://doi.org/10.1016/S0044-328X(75)80024-9">
Wu K., Zeng S., Teixeira da Silva J. A., Chen Z., Zhang J., Yang Y., Duan J., 2012. Efficient regeneration of Renanthera Tom Thumb ‘Qilin’ from leaf explants. Scientia Horticulturae, 135: 194–201. https://doi.org/10.1016/j.scienta.2011.11.028
https://doi.org/10.1016/j.scienta.2011.11.028">
Wu K., Zeng S., Lin D., Teixeira da Silva J. A., Bu Z., Zhang J., Duan J., 2014. In vitro propagation and reintroduction of the endangered Renanthera imschootiana Rolfe. PLoS ONE, 9(10): e110033. https://doi.org/10.1371/journal.pone.0110033
https://doi.org/10.1371/journal.pone.0110033">
Zia M., Yaqoob K., Mannan A., Nisa S., Raza G., Rehman R., 2020. Regeneration response of carnation cultivars in response of silver nanoparticles under in vitro conditions. Vegetos, 33(1): 11–20. http://dx.doi.org/10.1007/s42535-019-00074-9
http://dx.doi.org/10.1007/s42535-019-00074-9">