Geographical variation in morphological leaf traits of Huperzia serrata (lycopodiaceae) from Vietnam
Author affiliations
DOI:
https://doi.org/10.15625/0866-7160/v41n4.14719Keywords:
Huperzia serrata, climatic factors, morphological leaf traits, Vietnam.Abstract
Morphological leaf traits can be used to assess adaptive responses of plants to environmental conditions. To assess how the representation of Huperzia serrata leaf traits, such as leaf length (LL), leaf width (LW) and leaf area (LA) response to changes in mean annual temperature (MAT), sunshine duration (SuH), mean annual precipitation (MAP), air humidity (Hu), intraspecific variation of the morphological leaf traits of the species was analyzed along a geographical gradient of Vietnam. The results showed that among the three populations at the three sites, leaf sizes increased with MAT and MAP.
Huperzia serrata, climatic factors, morphological leaf traits, Vietnam.
Downloads
Metrics
References
Abramoff M. D., Magalhães P., Ram J., Sunanda J., 2004. Image processing with ImageJ. Biophotonics International, 11(7): 36–43.
Addinsoft., 2018. XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com. (Version 2018.1).
Arens N. C., 2001. Variation in performance of the tree fern Cyathea caracasana (Cyatheaceae) across a successional mosaic in an Andean cloud forest. American Journal of Botany, 88(3): 545–551. https://doi.org/10.2307/2657118.
Brodribb T. J., Feild T. S., Sack L., 2010. Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37(6): 488–498. https://doi.org/10.1071/FP10010.
Choat B., Sack L., Holbrook N. M., 2007. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytologist, 175(4): 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x.
Diaz S., Cabido M., Casanoves F., 1998. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9(1): 113–122. https://doi.org/10.2307/3237229.
Donohue K., Messiqua D., Pyle H. E., Heschel M. S., Schmitt J., 2000. Evidence of adaptive divergence in plasticity: Density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution, 54(6): 1956–1968. https://doi.org/10.1111/j.0014-3820.2000.tb01240.x.
Donovan L. A., Maherali H., Caruso C. M., Huber H., de Kroon H., 2011. The evolution of the worldwide leaf economics spectrum. Trends in Ecology & Evolution, 26(2): 88–95. https://doi.org/10.1016/j.tree.2010.11.011.
Dudley S. A., Schmitt J., 1996. Testing the Adaptive Plasticity Hypothesis: Density-Dependent Selection on Manipulated Stem Length in Impatiens capensis. The American Naturalist, 147(3): 445–465. https://doi.org/10.1086/285860.
Dunbar C. S., Sporck M. J., Sack L., 2009. Leaf Trait Diversification and Design in Seven Rare Taxa of the Hawaiian Plantago Radiation. International Journal of Plant Sciences, 170(1): 61–75. https://doi.org/10.1086/593111.
Etterson J. R., Shaw R. G., 2001. Constraint to Adaptive Evolution in Response to Global Warming. Science, 294(5540): 151–154. https://doi.org/10.1126/science.1063656.
Ezcurra C., Ruggiero A., Crisci J. V., 1997. Phylogeny of Chuquiraga Sect. Acanthophyllae (Asteraceae-Barnadesioideae), and the Evolution of its Leaf Morphology in Relation to Climate. Systematic Botany, 22(1): 151–163. https://doi.org/10.2307/2419683.
Feild T. S., Sage T. L., Czerniak C., Iles W. J. D., 2005. Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant, Cell & Environment, 28(9): 1179–1190. https://doi.org/10.1111/j.1365-3040.2005.01354.x.
Flann C., Ladiges P. Y., Walsh N. G., 2002. Morphological variation in Leptorhynchos squamatus (Gnaphalieae: Asteraceae). Australian Systematic Botany, 15(2): 205–219.
Giełwanowska I., Szczuka E., Bednara J., Górecki R., 2005. Anatomical Features and Ultrastructure of Deschampsia antarctica (Poaceae) Leaves from Different Growing Habitats. Annals of Botany, 96(6): 1109–1119. https://doi.org/10.1093/aob/mci262.
Huang W., Zhao X., Zhao X., Li Y., Lian J., 2016. Effects of environmental factors on genetic diversity of Caragana microphylla in Horqin Sandy Land, northeast China. Ecology and Evolution, 6(22): 8256–8266. https://doi.org/10.1002/ece3.2549.
Jaswinder K., Rajmeet S., Gurinder S., Harpreet K., Jasvir K., Manpreet K, Jaspreet K., 2016. A Systematic Review on Huperzia serrata. International Journal of Pharmacognosy and Phytochemical Research, 8(8): 1250–1255.
Joshi J., Schmid B., Caldeira M. C., Dimitrakopoulos P. G., Good J., Harris R., Lawton J. H., 2001. Local adaptation enhances performance of common plant species. Ecology Letters, 4(6): 536–544. https://doi.org/10.1046/j.1461-0248.2001.00262.x.
Kessler M., Siorak Y., Wunderlich M., Wegner C., 2007. Patterns of morphological leaf traits among pteridophytes along humidity and temperature gradients in the Bolivian Andes. Functional Plant Biology, 34(11): 963–971. https://doi.org/10.1071/FP07087.
Li X., Li Y., Zhang Z., Li X., 2015. Influences of Environmental Factors on Leaf Morphology of Chinese Jujubes. PLOS ONE, 10(5): 1-16. https://doi.org/10.1371/ journal.pone.0127825.
Marcysiak K., 2012. Calculated characters of leaves are independent on environmental conditions in Salix herbacea (Salicaceae) and Betula nana (Betulaceae). Acta Societatis Botanicorum Poloniae, 81(3): 153-158.https://doi.org/10.5586/asbp.2012.027.
Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Cornelissen J. H. C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3): 167–234. https://doi.org/10.1071/BT12225.
Royer D. L., Wilf P., 2006. Why Do Toothed Leaves Correlate with Cold Climates? Gas Exchange at Leaf Margins Provides New Insights into a Classic Paleotemperature Proxy. International Journal of Plant Sciences, 167(1): 11–18. https://doi.org/10.1086/497995.
Sack L., Cowan P. D., Jaikumar N., Holbrook N. M., 2003. The ‘hydrology’ of leaves: Co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26(8): 1343–1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x.
Sack L., 2013. Holding a Leaf Up to the Light. BioScience, 63(12): 981–982. https://doi.org/10.1525/bio.2013.63.12.12.
Sultan S. E., 1995. Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44(4): 363–383.
Traiser C., Klotz S., Uhl D., Mosbrugger V., 2005. Environmental signals from leaves – a physiognomic analysis of European vegetation. New Phytologist, 166(2): 465–484. https://doi.org/10.1111/j.1469-8137.2005.01316.x.
Uhl D., Mosbrugger V., 1999. Leaf venation density as a climate and environmental proxy: A critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology, 149(1): 15–26. https://doi.org/10.1016/S0031-0182(98)00189-8.
Vietnam Plant Data Center (BVNGroup). (n.d.). Retrieved April 25, 2016. Huperzia serrata. website: http://www.botanyvn.com/cnt.asp?param=edir&v=Huperzia%20serrata&list=species.
Villellas J., Berjano R., Terrab A., García M. B., 2014. Divergence between phenotypic and genetic variation within populations of a common herb across Europe. Ecosphere, 5(5): 1–14. https://doi.org/10.1890/ES13-00291.1.
Vogel S., 1968. “Sun Leaves” and “Shade Leaves”: Differences in Convective Heat Dissipation. Ecology, 49(6): 1203–1204. https://doi.org/10.2307/1934517.
Wang D. L. , Qi Y. D., Feng J. D., Wei J. H., 2011. An Efficient Regeneration Pattern via Gemmae for Huperzia serrata (Thunb. Ex Murray) Trev. In Hainan Province, China. American Fern Journal, 101(3): 182–192. https://doi.org/10.1640/0002-8444-101.3.182.
Wright I. J., Reich P. B., Westoby M., Ackerly D. D., Baruch Z., Bongers F., Villar R., 2004. The worldwide leaf economics spectrum. Nature, 428(6985): 821–827. https://doi.org/10.1038/ nature02403.