Effect of culture conditions on nitrogen-fixing activity of bacteria isolated from cassava cultivated soils of Vietnam


  • Pham Viet Cuong Mientrung Institute for Scientific Research,VAST, Vietnam
  • Nguyen Phuong Hoa Mientrung Institute for Scientific Research,VAST, Vietnam




BNF, Bacillus, N2-fixing


The bacteria capable of fixing atmospheric nitrogen were isolated from cassava cultivated soils of Vietnam. The potential isolates were identified by analyzing the 16S rRNA gene and by morphological, biochemical, cultural characteristics. The selected isolates were assigned to the species Bacillus sp. DQT2 M17, Bacillus subtilis DTAN6 M17, and Bacillus megaterium DSHB I8. The effect of culture conditions on the nitrogen-fixing activity of three selected isolates were studied and the obtained results showed that the highest amount of accumulated ammonia was detected after 6 days of incubation at 35 oC, pH 7.0 with sucrose as a carbon source. The selected strains could be exploited as inoculants for microbial fertilizer production.


Download data is not yet available.

Author Biography

Pham Viet Cuong, Mientrung Institute for Scientific Research,VAST, Vietnam

trung tâm sinh học phân tử nghĩa đô


Arora Y. P, Singh A. K, Singh E., 2015. Advanced Techniques for Bioremediation and Management of Salt Affected Soils, ICAR-Central Soil Salinity Research Institute Regional Research Station, Lucknow, pp. 167−117.

Hansen A. P., Choudhary D. K., Agrawal P. K., Varma A. E., 2017. Rhizobium Biology and Biotechnology, Springer, Cham, pp. 293−307.

Florence Mus, Alexander B. Alleman, Natasha Pence, Lance C. Seefeldt, John W. Peters., 2018. Exploring the alternatives of biological nitrogen fixation. Metallomics, 10: 523−538. https://doi.org/ 10.1039/C8MT00038G

Wongdee, Boonkerd, Teaumroong, Tittabutr, Giraud., 2018. Regulation of nitrogen fixation in Bradyrhizobium sp. strain DOA9 involves two distinct NifA regulatory proteins that are functionally redundant during symbiosis but not during free-living growth. Front. Microbiol., 9: 1644. https://doi.org/10.3389/fmicb.01644

Fang X. M., Li Y. S., Nie J., Wang C., Huang K. H., Zhang Y. K., Zhang Y. L., She H. Z., Liu X. B., Ruan R. W., Yuan X., Yi Z., 2018. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Research., 219: 160–168. https://doi.org/10.1016/ j.fcr..02.001

Vitousek P., Howarth R., 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13: 87–115. https://doi.org/10.1007/BF00002772

Hedin L. O., Brookshire E. J, Menge D. N., Barron A. R., 2009. The Nitrogen Paradoxin Tropical Forest Ecosystems. Annu. Rev. Ecol. Syst., 40: 613635. https://doi.org/10.1146/annurev.ecolsys.37.091305.110246

Galloway J. N, Townsend A. R, Erisman J. W., Bekunda M., Cai Z., Freney J. R., Martinelli L. A., Seitzinger S. P., Sutton M. A., 2008. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320: 889–892. https://doi.org/ 10.1126/science.1136674

Vitousek P. M., Menge D. N. L., Reed S. C., Cleveland C. C., 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B: Boil. Sci., 368: 20130119. https://doi.org/ 10.1098/rstb.2013.0119

Dobermann A., 2007. Nutrient use efficiency. Measurement and management. In: Kraus A., Isherwood K. and Heffer P. E., Proceeding of International fertilizer Industry Association, Brussels, Belgium, 7–9 March 2007, pp. 1−22.

David W. Emerich, Hari B. Krishnan, 2009. The economics of biological nitrogen fixation in the global economy. Agronomy Monographs, 52: 309–328.

Santi C., Bogusz D., Franche C., 2013. Biological nitrogen fixation in non-legume plants. Annals of Botany, 111(5): 743–767. https://doi.org/10.1093/aob/ mct048

Da Silva J. G., Serra G. E., Moreira J. R., Conçalves J. C., Goldemberg J., 1978. Energy Balance for Ethyl Alcohol Production from Crops. Science, 201: 903–906. https://doi.org/10.1126/science. 201.4359.903

Sulieman S., Tran L., 2016. Legume Nitrogen Fixation in a Changing Environment. Springer International. https://doi.org/ 10.2134/agronmonogr52.c11

Lindström K., Murwira M., Willems A., Altier N., 2010. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res. Microbiol., 161: 453–463. https://doi.org/10.1016/j.resmic. 2010.05.005

Tamura, et al., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28(10): 2731−2739.

Patel F. P., Minocheherhomji, 2018. Review: plant growth promoting rhizobacteria: blessing to agriculture. Int. J. Pure Appl. Biosci., 6: 481−492.

Le, Mire, Nguyen M. L, Fassotte B, Jardin P. du, Verheggen F., Delaplace P., Jijaki M. H., 2016. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. Biotechnol. Agron. Soc. Environ., 20: 299−313.

Adesemoye H., Torbert J. W., Kloepper, 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol., 58: 921−929.

Pamela Calvo, Louise Nelson & Joseph W. Kloepper, 2014. Agricultural uses of plant biostimulants. Plant Soil, 383: 2−41.

Gothwal V. K., Nigam M. K., Mohan D., Sasmal P., Ghosh, 2007. Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Appl. Ecol. Environ. Res., 6: 101−109.

Ahemad M. Kibret., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci., 26: 1−20.

Ding J., Wang Y., Liu S., Chen, 2005. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J. Appl. Microbiol., 99: 1271−1281.

Xuming Liu , Hongxing Zhao, Sanfeng Chen., 2006. Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr. Microbiol., 52: 186−190.

ElSorra E. Idris , Domingo J. Iglesias, Manuel Talon, Rainer Borriss, 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillusamyloliquefaciens FZB42. Mol. Plant Microbe Interact., 20: 619−626.

Padda K., Puri A., Chanway C. P., 2016. Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings. Biol. Fertil. Soils, 52: 377−387.

Yang H., Puri A., Padda K. P., Chanway C. P., 2017. Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophyticdiazotroph Paenibacillus polymyxa and its GFP-tagged derivative. Botany, 95: 611−619.

Xie B. L., Su Z. J., Cui, 1998. Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze River valley. Acta Microbiol. Sin., 38: 480−483.

Gouda S., Kerry R. G., Das G., Paramithiotis S., Patra J. K., 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res., 206: 131−140.




How to Cite

Cuong, P. V., & Hoa, N. P. (2021). Effect of culture conditions on nitrogen-fixing activity of bacteria isolated from cassava cultivated soils of Vietnam. Academia Journal of Biology, 43(3), 27–35. https://doi.org/10.15625/2615-9023/15820




Most read articles by the same author(s)