Study on the association of SLC2A9 rs16890979 with gout in 410 Vietnamese individuals
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/15551Keywords:
Gout, SLC2A9, rs16890979, PCR-RFLP, uric acidAbstract
Gout is a common form of inflammatory arthritis caused by crystallization of acid uric in the joints. The development of gout is not only triggered by environmental factors but also by genetic variation of individuals. In this study, the association between the variation SLC2A9 rs16890979 and gout was investigated. Total DNA was extracted from 410 blood samples of 163 gout patients and 247 age-matched healthy controls. Genotypes of SLC2A9 rs16890979 were obtained using PCR-RFLP. Chi-Square test was used to test whether allele distribution of rs16890979 followed Hardy-Weinberg Equilibrium (HWE). Associations of the clinical characteristics between gout patient and control groups were assessed using Mann-Whitney U. Chi-Square test or Fisher’s exact test was used to check four models (additive, recessive, dominant, co-dominant) for association of rs16890979 with gout. The obtained results showed that the allele distribution of SLC2A9 rs16890979 was in accordance with HWE (p > 0.05). Clinical characteristics such as triglyceride and creatinine were significantly different between gout patient and control groups. However, there was no association of rs16890979 with the risk of gout in Vietnamese population. Further study with a larger sample size should be implemented to confirm our results regarding the association of SLC2A9 rs16890979 with gout in the Vietnamese population. This study would help enrich the knowledge about the effects of hereditary factors on gout disease in the Vietnamese population.
Downloads
Metrics
References
Bhowmik D., Tiwari S. C., 2008. Metabolic syndrome and chronic kidney disease. Indian Journal of Nephrology, 18(1): 1−4.
Brandstätter A., Kiechl S., Kollerits B., Hunt S. C., Heid I. M., Coassin S., Willeit J., Adams T. D., Illig T., Hopkins P. N., Kronenberg F., 2008. Sex-Specific Association of the Putative Fructose Transporter SLC2A9 Variants With Uric Acid Levels Is Modified by BMI. Diabetes Care, 31(8): 1662−1667.
Burns C.M. W., 2012. Disorders of purine and pyramidine metabolism. McGraw-Hill, New York, USA.
Chen J., Gu D., Chen C. S., Wu X., Hamm L. L., Muntner P., Batuman V., Lee C. H., Whelton P. K., He J., 2007. Association between the metabolic syndrome and chronic kidney disease in Chinese adults. Nephrology Dialysis Transplantation, 22(4): 1100−1106.
Choi H. K., Krishnan E., 2008. Gout and the risk of type 2 diabetes among men with a high cardiovascular risk profile. Rheumatology, 47(10): 1567−1570.
Choi H. K., Ford E.S., Li C., Curhan G., 2007. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Care & Research: Official Journal of the American College of Rheumatology, 57(1): 109−115.
Dehghan A., Köttgen A., Yang Q., Hwang S. J., Kao W., Rivadeneira F., Boerwinkle E., Levy D., Hofman A., Astor B.C., Benjamin E. J., Van Duijn C. M., Witteman J. C., Coresh J., Fox C. S., 2008. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. The Lancet, 372(9654): 1953−1961.
Dinour D., Gray N. K., Campbell S., Shu X., Sawyer L., Richardson W., Rechavi G., Amariglio N., Ganon L., Sela B. A., Bahat H., Goldman M., Weissgarten J., Millar M. R., Wright A. F., Holtzman E. J., 2010. Homozygous SLC2A9 Mutations Cause Severe Renal Hypouricemia. Journal of the American Society of Nephrology, 21(1): 64−72.
Döring A., Gieger D., Christian T., Mehta A., Divya C., Gohlke D., Henning T., Prokisch L., Holger H., Coassin D., Stefan D., 2008. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nature Genetics, 40(4): 330−335.
Emmerson B., 1998. Hyperlipidaemia in hyperuricaemia and gout. Annals of the Rheumatic Diseases, 57(9): 509−510.
Ford E. S., 2005. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes care, 28(7): 1769−1778.
Hollis‐Moffatt J. E., Xu X., Dalbeth N., Merriman M. E., Topless R., Waddell C., Gow P. J., Harrison A. A., Highton J., Jones P. B., 2009. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Māori, Pacific Island, and Caucasian case–control sample sets. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 60(11): 3485−3492.
Inokuchi T., Tsutsumi Z., Takahashi S., Ka T., Moriwaki Y., Yamamoto T., 2010. Increased frequency of metabolic syndrome and its individual metabolic abnormalities in Japanese patients with primary gout. Journal of Clinical Rheumatology, 16(3): 109−112.
Jordan K. M., Cameron J. S., Snaith M., Zhang W., Doherty M., Seckl J., Hingorani A., Jaques R., Nuki G., 2007. British Society for Rheumatology and British Health Professionals in Rheumatology guideline for the management of gout. Rheumatology, 46(8): 1372−1374.
Keane W. F., Tomassini J. E., Neff D. R., 2011. Lipid abnormalities in patients with chronic kidney disease. Hemodialysis, 36(2): 135−142.
Kuo C. F., See L. C., Luo S. F., Ko Y. S., Lin Y. S., Hwang J. S., Lin C. M., Chen H. W., Yu K. H., 2009. Gout: an independent risk factor for all-cause and cardiovascular mortality. Rheumatology, 49(1): 141−146.
Li S. S., Maschio A., Busonero F., Usala G., Mulas A., 2007. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet, 3(11): 194−197.
Meng Q., Yue J., Shang M., Shan Q., Qi J., Mao Z., Li J., Zhang F., Wang B., Zhao T., Wang W., 2015. Correlation of GLUT9 Polymorphisms With Gout Risk. Medicine (Baltimore), 94(44): e1742. https://doi.org/10.1097/MD.0000000000001742
Neogi T., Jansen T. L., Dalbeth N., Fransen J., Schumacher H. R., Berendsen D., Brown M., Choi H., Edwards N. L., Janssens H. J., 2015. Gout classification criteria: An American college of Rheumatology European league against rheumatism collaborative initiative. Arthritis Rheumatol, 67(5): 2557–2568.
Preitner F., Bonny O., Laverrière A., Rotman S., Firsov D., Da C. A., Metref S., Thorens B., 2009. GLUT9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 106(36): 15501−15506.
Reynolds K., He J., 2005. Epidemiology of the metabolic syndrome. The American journal of the medical sciences, 330(6): 273−279.
Rho Y. H., Choi S.J., Lee Y.H., Ji J.D., Choi K.M., Baik S.H., Chung S. H., Kim C. G., Choe J. Y., Lee S. W., 2005. The prevalence of metabolic syndrome in patients with gout: a multicenter study. Journal of Korean medical science, 20(6): 1029−1033.
Ritz E., Wanner C., 2008. Lipid abnormalities and cardiovascular risk in renal disease. Journal of the American Society of Nephrology, 19(6): 1065−1070.
Smith E. U., 2010. Epidemiology of gout: an update. Best Pract Res Clin Rheumatol, 24(6): 811−827.
Stamp L. K., Chapman P. T., 2013. Gout and its comorbidities: implications for therapy. Rheumatology, 52(1): 34−44.
Takahashi S. Y., Moriwaki Y., Tsutsumi Z., Higashino K., 1994. Impaired lipoprotein metabolism in patients with primary gout influence of alcohol intake and body weight. Br J Rheumatol, 33(8): 731−734.
Taniguchi A. U., Yamanaka M., Yamanaka H., Hosoyamada M., Endou H., Kamatani N., 2005. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum, 52(2): 2576−2577.
Tu H. P., Chen C. J., Tovosia S., Ko A. S., Lee C. H., Ou T. T., Lin G. T., Chang S. J., Chiang S. L., Chiang H. C., 2009. Associations of a nonsynonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese and Solomon Islanders. Annals of the rheumatic diseases, 43(2): 357−359.
Vázquez M. J., García C. G., Medrano G., Ornelas M., Alcocer L., Marquez A., Burgos V. R., 2004. Metabolic syndrome and ischemic heart disease in gout. Journal of Clinical Rheumatology, 10(3): 105−109.
Vitart V., Rudan I., Hayward C., Gray N. K., Floyd J., Palmer C. N., Knott S. A., Kolcic I., Polasek O., Graessler J., Wilson J. F., Marinaki A., Riches P. L., Shu X., Janicijevic B., Smolej N., Gorgoni B., Morgan J., Campbell S., Biloglav Z., Barac L., Pericic M., Klaric I. M., Zgaga L., Skaric J. T., Wild S. H., Richardson W. A., Hohenstein P., Kimber C. H., Tenesa A., Donnelly L. A., Fairbanks L. D., Aringer M., McKeigue P. M., Ralston S. H., Morris A. D., Rudan P., Hastie N. D., Campbell H., Wright A. F., 2008. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nature Genetics, 42(2): 437−441.
Voruganti V. S., Franceschini N., Haack K., Laston S., Maccluer J. W., Umans J. G., Comuzzie A. G., North K. E., Cole S. A., 2013. Replication of the effect of SLC2A9 genetic variation on serum uric acid levels in American Indians. European Journal Of Human Genetics, 22(9): 138−141.
Wannamethee S. G., Shaper A. G., Perry I. J., 1997. Serum Creatinine Concentration and Risk of Cardiovascular Disease. A Possible Marker for Increased Risk of Stroke, 28(3): 557−563.
Zhang W., Doherty M., Pascual E., Bardin T., Barskova V., Conaghan P., Gerster J., Jacobs J., Leeb B., Lioté F., 2006. EULAR evidence based recommendations for gout. Ann Rheum Dis, 65(1): 1301−1311.
Zubovic S. V., Kristic S., Prevljak S., Pasic I. S., 2016. Chronic Kidney Disease and Lipid Disorders. Medical Archives, 70(3): 191−192.