Effects of environmental conditions on propanil degrading activity of Acinetobacter baumannii DT
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/v42n3.14781Keywords:
Acinetobacter baumannii DT, environmental factors, extreme conditions, propanil.Abstract
Effects of various environmental conditions on propanil degrading activity of Acinetobacter baumannii DT were investigated. Results showed that both propanil degradation and bacterial growth rate were reduced when bacteria were cultured in extreme conditions, such as high acidic or alkaline levels or high salinity. Moreover, the propanil degradation activity of A. baumannii DT decreased in contaminated water. The propanil dissipation rate was higher in herbicides-contaminated soil (treated soil) than in herbicide-free soil. In soil inoculated with A. baumannii DT, propanil removal was enhanced. Even though the propanil degrading activity of A. baumannii DT were reduced under extremely stressful conditions, this bacterium retained a good potential to degrade propanil in real environmental conditions.
Downloads
Metrics
References
APHA, 1998. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington, DC.
Burge W. D., 1972. Microbial populations hydrolyzing propanil and accumulation of 3,4-dichloroaniline and 3,3’,4,4’-tetrachloroazobenzene in soils. Soil Bid. Biochem., 4: 379–386.
Dabrowski J. M., Peall S. K., Van Niekerk A., Reinecke A. J., Day J. A., Schulz R., 2002. Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variable sand contamination. Water Research, 36: 4975–4984.
Dahchour A., Bitton G., Coste C. M., Bastide J., 1986. Degradation of the herbicide propanil in distilled water. Bull. Environ. Contam. Toxicol., 36(4): 556–562.
Darren R., Renate H., Nick B., Andrew D., Mohamed F., Michael E., Peter E., 2009. Clinical outcomes and kinetics of propanil following acute self-poisoning: a prospective case series. BMC Clin. Pharmacol., 9: 3.
Duc H. D., 2017. Degradation of chlorotoluenes by Comamonas testosterone KT5. Appl. Biol. Chem., 60(4): 457–465.
Milan M., Vidotto F., Piano S., Negre M., Ferrero A., 2012. Dissipation of propanil and 3,4 dichloroaniline in three different rice management systems. J Environ. Qual., 41(5): 1487–1496.
Mitsou K., Koulianou A., Lambropoulou D., Pappas P., Albanis T., Lekka M., 2006. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide propanil in the aquatic plant Lemna minor. Chemosphere, 62: 275–284.
Nguyen O. T., Ha D. D., 2019. Degradation of chlorotoluenes and chlorobenzenes by the dual-species biofilm of Comamonas testosteroni strain KT5 and Bacillus subtilis strain DKT. Ann. Microbiol.,
: 267–277.
Oanh N. T., Duc H. D., Ngoc D. T. H, Thuy N. T. D., Hiep N. H., Hung N. V., 2020. Biodegradation of propanil by Acinetobacter baumannii DT in a biofilm-batch reactor and effects of butachlor on the degradation process. FEMS Microbiol. Lett., 367(2): fnaa005. https://doi.org/10.1093/femsle/fnaa005.
Pothuluri J., Hinson J., Cerniglia C., 1991. Propanil: toxicological characteristics, metabolism, and biodegradation potential in soil. J. Environ. Qual. (USA), 20: 330–347.
Primel E. G., Zanella R., Kruz M. H. S., Goncalves F. F., Martins M. L., Machado S. L. O., Marchesan E., 2007. Risk assessment of surface water contamination by herbicide residues: monitoring of propanil degradation in irrigated rice field waters using HPLC-UV and confirmation by GC-MS. J. Braz. Chem. Soc., 18(3): 585–589.
Reichel H., Sisler H., Kaufman D., 1991. Inducers, substrates, and inhibitors of a propanil-degrading amidase of Fusarium oxysporum. Pestic Biochem. Physiol., 39: 240–250.
Salazar K. D., Ustyugova I. V., Brundage K. M., Barnett J. B., Schafer R., 2008. A review of the immunotoxicity of the pesticide 3, 4-dichloropropionanalide. J. Toxicol Environ Health B Crit. Rev.,
: 630–645.
Silva E., Batista S., Viana P., Antunes P., Serôdio L., Cardoso A. T., Cerejeira M. J., 2006. Pesticides and nitrates in groundwater from oriziculture areas of the ‘Baixo Sado’ region (Portugal). Int. J. Environ. An. Ch., 86: 955–972.
Soil Science Division Staff, 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H. C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.
Tomlin C., 2009. The Pesticide Manual, Fifteenth. BCPC Publications, UK:
–945.
Zhang J., Yin J. G., Hang B. J., Cai S., He J., Zhou S. G., Li S. P., 2012. Cloning of a novel arylamidase gene from Paracoccus sp. strain FLN-7 that hydrolyzes amide pesticides. Appl. Environ. Microbiol.,
: 4848–4855.
Zhang L., Hu Q., Hang P., Zhou X., Jiang J., 2019a. Characterization of an arylamidase from a newly isolated propanil-transforming strain of Ochrobactrum sp. PP-2. Ecotoxicol. Environ. Saf., 167: 122–129.
Zhang L., Zhou X. Y., Su X. J., Hu Q., Jiang J. D., 2019b. Spirosoma sordidisoli sp. nov., a propanil-degrading bacterium isolated from a herbicide-contaminated soil. Antonie van Leeuwenhoek, 112(10): 1523–1532.