Biodegradation of 2,4-dichlorophenoxyacetic acid and 4-chlorophenol in contaminated soils by Pseudomonas fluorescens strain HH
Author affiliations
DOI:
https://doi.org/10.15625/0866-7160/v41n3.13009Keywords:
Pseudomonas fluorescens HH, 2, 4-dichlorophenoxyacetic acid, 4-chlorophenol, loamy soil, degradation.Abstract
Herbicides with 2,4-dichlorophenoxyacetic acid (2,4D) has been commonly used to control weeds and widely detected in environments. In this study, biodegradating activity of Pseudomonas fluorescens HH on 2,4D and 4-chlorophenol (4CP) in soil was carried out. The inoculation with Pseudomonas fluorescens HH in soils increased the degradation of 4CP and 2,4D by from 47.0% to 51.4% and from 38.4% to 47.4%, respectively, compared to the degradation by autochthonous microorganisms. Pseudomonas fluorescens HH could degrade well 2,4D and 4CP in various soils, but the most efficient chemical removal was observed when they were in the loamy soil. Moreover, the efficiency of chemical degradation was significantly affected by the moisture contents with the highest performance of degradation at 10 and 20% soil moisture. Also, the addition of nitrogen (N), phosphorous (P) and potassium (K) stimulated the dissipation rates. The determination of degradation pathway for 2,4D in Pseudomonas fluorescens HH indicated that 2,4-dichlorophenol (2,4DCP) and 4CP were formed as metabolites.Downloads
Metrics
References
Balajee S., Mahadevan A., 1993. Biodegradation of 2,4-dichlorophenoxyacetic acid in soil by Azotobacter chroococcum. Toxicological & Environmental Chemistry, 39(3-4): 169–172.
Boivin A., Amellal S., Schiavon M., van Genuchten, M. T., 2005. 2,4-Dichlorophenoxyacetic acid (2,4D) sorption and degradation dynamics in three agricultural soils. Environmental Pollution, 138(1): 92–99.
Bryant F. O., 1992. Biodegradation of 2,4-Dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by dichlorophenol-adapted microorganisms from freshwater, anaerobic sediments. Applied Microbiology and Biotechnology, 38(2): 276–281.
Chang B. V., Liu J. Y., Yuan S. Y. 1998. Dechlorination of 2,4-Dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid in soil. Science of The Total Environment, 215(2-1): 1–8.
Chang Y. C., Reddy M. V., Umemoto H., Sato Y., Kang M. H., Yajima Y., Kikuchi S., 2016. Bio-augmentation of Cupriavidus sp. CY-1 into 2,4D contaminated soil: microbial community analysis by culture dependent and independent techniques. PLOS ONE 10, e0145057.
Charles J. M., Hanley T. R., Wilson R. D., van Ravenzwaay B., Bus J. S., 2001. Development toxicity studies in rats and rabbits on 2,4-Dichlorophenoxyacetic acid and its forms. Toxicological Sciences, 60(1):121–131.
Cho Y. G., Rhee S. K., Lee S. T., 2000. Effect of soil moisture on bioremediation of chlorophenol-contaminated soil. Biotechnology Letters, 22(110): 915–919.
Comeau Y., Greer C. W., Samson R., 1993. Role of inoculum preparation and density on the bioremediation of 2,4-D contaminated soil by bioaugmentation. Applied Microbiology and Biotechnology, 38(5): 681–687.
Cotterill E. G., 1980. The efficiency of methanol for the extraction of some herbicide residues from soil. Pesticide Science, 11: 23–28.
Cycoń M., Żmijowska A., Piotrowska-Seget Z., 2011. Biodegradation kinetics of 2,4D by bacterial strains isolated from soil. Central European Journal of Biology, 6(2): 188–198.
Duc H. D., 2017. Degradation of chlorotoluenes by Comamonas testosterone KT5. Applied Biological Chemistry, 60(4): 457–465.
Duffard R., Garcia G., Rosso S., Bortolozzi A., Madariaga M., di Paolo O., Evangelista de Duffard A. M., 1996. Central nervous system myelin deficit in rats exposed to 2,4-dichlorophenoxyacetic acid throughout lactation. Neurotoxicology and Teratology, 18(6): 691–696.
Entry J. A., Donnelly P. K., Emmingham W. H., 1996. Mineralization of atrazine and 2,4D in soils inoculated with Phanerochaete chrysosporium and Trappea darkeri. Applied Soil Ecology, 3(1): 85–90.
Frank R., Logan L., 1988. Pesticide and industrial chemical residues at the mouth of the grand, Saugeen and Thames rivers, Ontario, Canada, 1981–85. Archives of Environmental Contamination and Toxicology, 17(6): 741–754.
Gauri S. S., Mandal S. M., Dey S., Pati B. R., 2012. Biotransformation of p-coumaric acid and 2,4-Dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81. Bioresource Technology, 126: 350–353.
Greer C. W., Hawari J., Samson R., 1990. Influence of environmental factors on 2,4-Dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat. Archives of Microbiology, 154(4): 317–322.
Greer L. E., Shelton D. R., 1992. Effect of inoculant strain and organic matter content on kinetics of 2,4-Dichlorophenoxyacetic acid degradation in soil. Applied and Environmental Microbiology, 58(5): 1459–1465.
Harborne J. B., 1988 Introduction to Ecological Biochemistry. San Diego, California: Academic Press. ISBN 0-12324683-0.
Hope B. K., Pillsbury L., Boling B., 2012. A state-wide survey in Oregon (USA) of trace metals and organic chemicals in municipal effluent. Science of The Total Environment, 417–418: 263–272.
Jacobsen C. S., Pedersen J. C., 1991. Growth and survival of Pseudomonas cepacia DBO1(pRO101) in soil amended with 2,4-Dichlorophenoxyacetic acid. Biodegradation, 2(4): 245–252.
Kim H. J., Park Y. I., Dong M. S., 2005. Effects of 2,4D and DCP on the DHT-induced androgenic action in human prostate cancer cells. Toxicological Sciences, 88(1): 52–59.
Klecka G., Persoon C., Currie R., 2010. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures. Reviews of Environmental Contamination and Toxicology, 207: 1–93.
Kolpin D., Barbash J., Gilliom R., 2000. Pesticides in Ground Water of the United States, 1992–1996, 38.
Konasewich D., Traversy W., Zar H., 1978. Great Lakes water quality status report on organic and heavy metal contaminants in the Lakes Erie, Michigan, Huron and Superior Basins to the implementation committee of the Great Lakes Water Quality Board. International Joint Commission (IJC) Digital Archive.
Kwangjick L., Johnson V. J., Barry R., Blakley B. R., 2001. The effect of exposure to a commercial 2,4D formulation during gestation on the immune response in CD-1 mice. Toxicology, 165(1): 39–49.
Mattsson J., Charles J., Yano B., Cunny L., Wilson R., Bus J., 1997. Single-dose and chronic dietary neurotoxicity screening studies on 2,4-Dichlorophenoxyacetic acid in rats. Fundamental and Applied Toxicology, 40(1): 11–119.
McGhee I., Sannino F., Gianfreda L., Burns R. G., 1999. Bioavailability of 2,4D sorbed to a chlorite like complex. Chemosphere, 39(2): 285–291.
Moody R. P., Wester R. C., Melendres J. L., Maibach H. I., 1992. Dermal absorption of the phenoxy herbicide 2,4D dimethylamine in humans: effect of DEET and anatomic site. Journal of Toxicology and Environmental Health, 36(3): 241–250.
Mrozik A., Miga S., Piotrowska-Sege Z., 2011. Enhancement of phenol degradation by soil bioaugmentation with Pseudomonas sp. JS150. Journal of Applied Microbiology, 111(6): 1357–1370.
Musarrat J., Bano N., Rao R. A. K., 2000. Isolation and characterization of 2,4-Dichlorophenoxyacetic acid-catabolizing bacteria and their biodegradation efficiency in soil. World Journal of Microbiology and Biotechnology, 16(5): 495–497.
Nguyen Thi Oanh, Ha Danh Duc, Tran Dat Huy, Nguyen Gia Hien, Nguyen Thi Huynh Nhu, 2018. Degradation of 2,4-Dichlorophenoxyacetic acid by Pseudomonas fluorescens Strain HH. Academia Journal of Biology, 2018, 40(3): 65–73. https://doi.org/ 10.15625/2615-9023/v40n3.12694.
Nowak A., Mrozik A., 2018. Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. Journal of Environmental Management, 215: 216–229.
Ogram A. V., Jessup R. E., Ou L. T., Rao P. S., 1985. Effects of sorption on biological degradation rates of (2,4-Dichlorophenoxy) acetic acid in soils. Applied and Environmental Microbiology, 49(3): 582–587.
Ordaz-Guillen Y., Galindez-Maye, C. J., Ruiz-Ordaz N., Juarez-Ramirez C., Santoyo-Tepole F., and Ramos-Monroy O., 2014. Evaluating the degradation of the herbicides picloram and 2,4D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environmental Science and Pollution Research International, 21(14):
–8773.
Robles-González I., Ríos-Leal E., Ferrera-Cerrato R., Esparza-García F., Rinderkenecht-Seijas N., Poggi-Varaldo H. M., 2006. Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2,4-Dichlorophenoxyacetic acid using slurry bioreactors: Effect of electron acceptor and supplementation with an organic carbon source. Process Biochemistry, 41(9): 1951–1960.
Schjønning P., Thomsen I. K., Petersen S. O., Kristensen K., Christensen B. T., 2011. Relating soil microbial activity to water content and tillage-induced differences in soil structure. Geoderma, 163, 256e264.
Soil Survey Division Staff (1993). Soil survey manual. United States Department of Agriculture. pp. 63–65. Retrieved 30 August 2014.
Webber M. D., Wang C., 1995. Industrial organic compounds in selected Canadian soils. Canadian Journal of Soil Science, 75(4): 513–524.
WHO, 1989. Chlorophenols other than pentachlorophenol, Environmental Health Criteria 93, World Health Organization.
Williams W. M., Holden P. W., Parsons D. W., Lorber M. N., 1988. Pesticides in Groundwater Data Base 1988 Interim Report, Office Pesticide Programs, U.S. Environmental Protection Agency, Washington, D. C. 37 pp.
Wu C. Y., Zhuang L., Zhou S. G., Li F. B., Li X. M., 2010. Fe(III)-enhanced anaerobic transformation of 2,4-Dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiology Ecology, 71(1): 106–113.
Xia Z. Y., Zhang L., Zhao Y., Yan X., Li S. P., Gu T., Jiang J. D., 2017. Biodegradation of the herbicide 2,4-Dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Current Microbiology, 74(2): 193–202.
Yang Z., Xu X., Dai M., Wang L., Shi X., Guo R., 2017. Rapid degradation of 2,4-Dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition. Bioresour Technology, 232: 146–151.