Assessing Tropical Cyclone-induced rainfall distributions derived from the TRMM and GSMaP satellite datasets over Vietnam's mainland
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/21040Keywords:
TRMM; GSMaP; TC-induced rainfall; Vietnam's mainlandAbstract
In this study, 169 meteorological stations are used as the "ground truth" to assess the Tropical Rainfall Measuring Mission (TRMM) and Global Satellite Mapping of Precipitation (GSMaP) products in estimating tropical cyclone (T.C.)-induced rainfall over Vietnam's mainland during the 2000-2019 period. Various statistical indices compare two satellite rain datasets with rain gauge observations. In this study, the performance of satellite-based precipitation datasets was investigated for T.C.s affecting the entire Vietnam's mainland, mainly focusing on the position of surface weather stations relative to the landfall and movement directions of the T.C.s. The results indicate that both satellite rain datasets accurately provide the radial distribution of TC-induced rainfall, concentrated within 500 km from the T.C. center, and decreases as the distance from the T.C. center increases. Significantly, the verifications show the close similarity between the TRMM and GSMaP products in estimating TC-induced rainfall. In particular, the assessments considering T.C. intensities and T.C. landing sub-regions suggest that the performance of two satellite rain datasets in evaluating TC-induced rainfall over Vietnam's mainland strongly depends on the intensity of TC-induced rainfall. Light rainfall is estimated more accurately than heavy rainfall. As a result, the performance of the TRMM and GSMaP show higher errors in the coastal areas, where most TC-induced rainfall concentrates, particularly within a 200 km radius of the T.C. center. Besides, M.A.E. exhibits higher values on the left side of the T.C. track compared to those on the right side for all T.C. intensities while showing differences in T.C. landing sub-regions for both datasets.
Downloads
References
Aonashi K., Awaka J., Hirose M., Kozu T., Kubota T., Liu G., Shige S., Kida S., Seto S., Takahashi N., Takayabu Y.N., 2009. GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. Journal of the Meteorological Society of Japan, 87A, 119–136. https://doi.org/10.2151/jmsj.87A.119.
Ashouri H., Hsu K., Sorooshian S., Braithwaite D.K., Knapp K.R., Cecil L.D., Nelson B.R., Prat O.P., 2015. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96, 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1.
Bagtasa G., 2022. Assessment of tropical cyclone rainfall from GSMaP and G.P.M. products and their application to analog forecasting in the Philippines. Atmosphere, 13, 1398. https://doi.org/10.3390/atmos13091398.
Bahrami, M., Talebbeydokhti, N., Rakhshandehroo, G., Nikoo, M. R., & Adamowski, J. F., 2023. A fusion-based data assimilation framework for runoff prediction considering multiple sources of precipitation. Hydrological Sciences Journal, 68(4), 614-629. https://doi.org/10.1080/02626667.2023.2180375
Chen S., Hong Y., Cao Q., Kerstetter P.-E., Gourley J.J., Qi. Y., Zhang J., Howard K., Hu J., Wang J., 2013a. Performance evaluation of radar and satellite rainfalls Chefor Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? Journal of Hydrology, 506, 4–13. https://doi.org/10.1016/j.jhydrol.2012.12.026.
Chen Y., Ebert E.E., Walsh K.J.E., Davidson N.E., 2013b. Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. Journal of Geophysical Research: Atmospheres, 118, 11966–11978. https://doi.org/10.1002/2013JD020319.
Chen S.S., Knaff J.A., Marks Jr.F.D., 2006. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Monthly Weather Review, 134, 3190–3208. https://doi.org/10.1175/MWR3245.1.
Chokngamwong R., Chiu L.S., 2008. Thailand Daily Rainfall and Comparison with TRMM Products. Journal of Hydrometeorology, 9, 256-266. https://doi.org/10.1175/2007JHM876.1
Deo A., Walsh K.J.E., 2016. Evaluation of TRMM Multi-satellite Precipitation Analysis during the passage of Tropical Cyclones over Fiji. Journal of Southern Hemisphere Earth Systems Science, 66, 442–456. Doi: 10.22499/3.6604.005.
Deo A., Walsh K.J.E., Peltier A., 2016. Evaluation of TMPA 3B42 Precipitation Estimates during the Passage of Tropical Cyclones over New Caledonia. Theoretical and Applied Climatology, 129(3-4), 711–727. https://doi.org/10.1007/s00704-016-1803-0.
Deo A., Walsh K.J.E., Peltier A., 2017. Evaluation of TMPA 3B42 precipitation estimates during the passage of tropical cyclones over New Caledonia. Theoretical and Applied Climatology, 129, 711–727. https://doi.org/10.1007/s00704-016-1803-0.
Derin Y., Yilmaz K.K., 2014. Evaluation of multiple satellite-based precipitation products over complex topography. Journal of Hydrometeorology, 15(4), 1498–1516. https://doi.org/10.1175/JHM-D-13-0191.1.
Ebert E.E., Janowiak J.E., Kidd C., 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Soc., Iety, 88, 47–64. Doi: 10.1175/BAMS-88-1-47.
Habib E., Henschke A., Adler R.F., 2009. Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, U.S.A. Atmospheric Research, 94, 373–388. https://doi.org/10.1016/j.atmosres/2009.06.015.
Hou A.Y., Zhang S.Q., Silva A.M.da, Olson W.S., Kummerow C.D., Simpson J., 2001. Improving Global Analysis and Short-Range Forecast Using Rainfall and Moisture Observations Derived from TRMM and SSM/I Passive Microwave Sensors. Bulletin of the American Meteorological Society, 82, 659–680. https://doi.org/10.1175/1520-0477(2001)082<0659:IGAASF>2.3.CO;2.
Huang H., Chen F., 2019. Precipitation microphysics of tropical cyclones over the western North Pacific based on GPM DPR observations: A preliminary analysis. Journal of Geophysical Research: Atmospheres, 124, 3124–3142. https://doi.org/10.1029/2018JD029454.
Huffman G.J., Bolvin D.T., Nelkin E.J., 2015. Integrated Multi-Satellite Retrievals for G.P.M. (IMERG) technical documentation. NASA/GSFC Code, 612, 47. http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.
Huffman G.J., Bolvin D.T., Nelkin E.J., Wolff D.B., Adler R.F., Gu G., Hong Y., Bowman K.P., Stocker E.F., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8, 38–55. https://doi.org/10.1175/JHM560.1.
Joyce R.J., Janowiak J.E., Arkin P.A., Xie P., 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
Kidd C., Levizzani V., 2011. Status of satellite precipitation retrievals. Hydrology and Earth System Sciences, 15, 1109–1116. https://doi.org/10.5194/hess-15-1109-2011.
Kubota T., Shige S., Hashizume H., Aonashi K., Takahashi N., Seto S., Hirose M., Takayabu Y.N., Ushio T., Nakagawa K., Iwanami K., Kachi M.,Okamoto K., 2007. Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Transactions on Geoscience and Remote Sensing, 45, 2259–2275.
Doi: 10.1109/TGRS.2007.895337.
Liu Q., Chiu. L.S., Hao X., Yang C., 2021. Spatiotemporal Trends and Variations of the Rainfall Amount, Intensity, and Frequency in TRMM Multi-satellite Precipitation Analysis (TMPA) Data. Remote Sensing, 13(22), 4629. https://doi.org/10.3390/rs13224629.
Lonfat M., Marks Jr.F.D., Chen S.S., 2004. Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Monthly Weather Review, 132, 1645–1660. https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.
Nesbitt S.W., Zipser E.J., 2003. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. Journal of Climate, 16, 1456–1475. https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2.
Nguyen D.Q., Renwick J., McGregor J., 2016. On the presence of tropical vortices over the Southeast Asian sea-maritime Continent region. Journal of Climate, 29, 4793–4800.
Nguyen-Thi H.A., Matsumoto J., Ngo-Duc T., Endo N., 2012. Long-term trends in tropical cyclone rainfall over Vietnam. Journal of Agroforestry and Environment, 6, 89−92.
Okamoto K.I., Ushio T., Iguchi T., Takahashi N., Iwanami K., 2005. The global satellite mapping of precipitation (GSMaP) project. Proc. eedings of the 25th International Symposium on Geoscience and Remote Sensing. Seoul. South Korea. IEEE, 3414–3416.
Olaguera L.M.P., Matsumoto J., Manalo J.A., 2023. The contribution of non-tropical cyclone vortices to the rainfall of the Philippines. International Journal of Climatology, 43(4), 1871–1885.
Pham N.T.T., Vu H.H., 2020. Characteristics of tropical cyclone precipitation system along central coastal region of Vietnam by TRMM and GSMaP data. In: Trung Viet N., Xiping D., Thanh Tung T. (eds) APAC 2019. Springer, Singapore. International conference on Asian and Pacific Coasts, Springer, 87–91. https://doi.org/10.1007/978-981-15-0291-0_13.
Pham-Thanh H., Ngo-Duc T., Matsumoto J., Phan-Van T., Vo-Van H., 2020. Rainfall trends in Vietnam and their associations with tropical cyclones during 1979−2019. The Scientific Online Letters on the Atmosphere, A, 16, 169−174. https://doi.org/10.2151/sola.2020-029.
Pham-Thanh H., van der Linden R., Ngo-Duc T., Nguyen-Dang Q., Fink A.H., Phan-Van T., 2019. Predictability of the rainy season onset date in Central Highlands of Vietnam. International Journal of Climatology, 40, 3072–3086. https://doi.org/10.1002/joc.6383.
Rao G.V., Macarthur P.D., 1994. The SSM/I estimated rainfall amounts of tropical cyclones and their potential in predicting the cyclone intensity changes. Monthly Weather Review, 122, 1568−1574.
Rodgers E.B., Adler R.F., Pierce H.F., 2000. Contribution of tropical cyclones to the North Pacific climatological rainfall as observed from satellites. Journal of Applied Meteorology and Climatology, 39, 1658−1678.
Roy P., Rao T.N., 2022. Precipitation Characteristics of Cyclonic Disturbances over the South Asia Region as Revealed by TRMM and G.P.M. Journal of Climate, 35, 4943–4957. https://doi.org/10.1175/JCLI-D-21-0774.1.
Sorooshian S., Hsu K-L., Gao X., Gupta H.V., Imam B., Braithwaite D., 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81, 2035–2046. https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.
Sun Q., Miao C.Q., Duan Q.H., Ashouri H.S., Sorooshian S., Hsu K.L., 2018. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56, 79–107. https://doi.org/10.1002/2017RG000574.
Sutton J.R.P., Jakobsen A., Lanyon K., Lakshmi V., 2022. Comparing Precipitation during Typhoons in the Western North Pacific Using Satellite and In Situ Observations. Remote Sensing, 14, 877. https://doi.org/10.3390/rs14040877.
Tran-Minh H., Vu-Thanh H., Pham-Thi-Thanh N., Pham-Thanh H., 2023. Characteristics of rainfall distribution induced by tropical cyclones making landfall over Vietnam using GSMaP satellite rainfall data. Vietnam Journal of Hydrometeorology, 748, 64–76. Doi: 10.36335/VNJHM.2023(748).64-76 (in Vietnamese).
Tran-Quang D., Pham-Thanh H., Vu T., Kieu C., Phan-Van T., 2020. Climatic Shift of the Tropical Cyclone Activity Affecting Vietnam's Coastal Region. Journal of Applied Meteorology and Climatology, 59, 1755–1768. https://doi.org/10.1175/JAMC-D-20-0021.1.
Trinh-Tuan L., Matsumoto J., Ngo-Duc T., Nodzu M.I., Inoue T., 2019. Evaluation of satellite precipitation products over Central Vietnam. Progress in Earth and Planetary Science, 6, 54. https://doi.org/10.1186/s40645-019-0297-7.
Ushio T., Sasashige K., Kubota T., Shige S., Okamoto K., Aonashi K., Inoue T., Takahashi N., Iguchi T., Kachi M., Oki R., Morimoto T., Kawasaki Z., 2009. A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal of the Meteorological Society Japan, 87A, 137–151. https://doi.org/10.2151/jmsj.87A.137.
Wilks D.S., 2006. Statistical Methods in the Atmospheric Sciences, 2nd ed., International Geophysics Series, Academic Press. San Diego. California. U.S.A., 91, 627p.
Yang S., Surratt M., Whitcomb T.R., Camacho C., 2024. Evaluation of IMERG and GSMaP for tropical cyclone applications. Geophysical Research Letters, 51, e2023GL106414. https://doi.org/10.1029/2023GL106414.
Yokoi S., Matsumoto J., 2008. Collaborative effects of cold surge and tropical depression-type disturbance on heavy rainfall in central Vietnam. Monthly Weather Review, 136, 3275–3287.
Yu Z., Wang Y., Xu H., Davidson N., Chen Y., Chen Y., Yu H., 2017. On the relationship between intensity and rainfall distribution in tropical cyclones making rainfall over China. Journal of Applied Meteorology and Climatology, 56, 2883–2901. https://doi.org/10.1175/JAMC-D-16-0334.1.
Yu Z., Yu H., Chen P., Qian C., Yue C., 2009. Verification of Tropical Cyclone-Related Satellite Precipitation Estimates in Mainland China. Journal of Applied Meteorology and Climatology, 48, 2227–2241. https://doi.org/10.1175/2009JAMC2143.1.
Yue H., Gebremichael M., Nourani V., 2022. Evaluation of Global Forecast System (G.F.S.) Medium-Range Precipitation Forecasts in the Nile River Basin. Journal of Hydrometeorology, 23, 101–116. https://doi.org/10.1175/JHM-D-21-0110.1.
Zhao D.J., Gao W.H., Xu. H.X., Yu Y.B., Chen L.S., 2022. A modeling study of cloud physical properties of extreme and non-extreme precipitation in landfalling typhoons over China. Atmospheric Research, 277. https://doi.org/10.1016/j.atmosres.2022.106311.